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Monitoring Assimilation System
ECMWF 4D-Var system handles a large variety of space and surface-

based observations. It combines observations and atmospheric state a 

priori information by using a linearized and non-linear forecast model

Effective monitoring of a such complex system with  107 degree of 

freedom and 106 observations is a necessity. No just few indicators but a 

more complex set of measures to answer questions like 

How much influent are the observations in the analysis?

How much influence is given to the a priori information?
How much the estimate depends on one single influential  obs?

Diagnostic methods are available for monitoring  multiple regression 

analysis to provide protection against distortion by anomalous data
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Influence Matrix: Introduction
Unusual or influential data points not necessarily are bad observations 

but they may contain some of most interesting sample information

In OLS quantitatively the information is available in the Influence Matrix

which gives each fitted value ŷi as a linear combination of yi

ŷ = S y
Hat Matrix Leverage

Influence

Tuckey 63, Hoaglin and Welsch 78, Velleman and Welsch 81
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Outline

Influence matrix diagnostic in Ordinary Least Square

Influence matrix application in data assimilation in NWP

Influence matrix approximation

Results and findings related to data influence and information content

Conclusion
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Influence Matrix in OLS

The OLS regression model is

y = Xβ + ε

= T -1 Tβ (X X ) X y

Y (mx1) observation vector
X (mxq) predictors matrix, full rank q
$ (qx1) unknown parameters
, (mx1) error 2( ) 0 , ( )E V a r σ= =ε ε I

OLS provide  the solution 

The fitted response is

ŷ = S y 1T T−=S X (X X ) X
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Influence Matrix Properties

ŷ = S y
S (mxm) symmetric, idempotent and positive definite matrix

0 1i iS≤ ≤ ( )T r q=SThe diagonal element satisfy 
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Average Self-Sensitivity=q/m

It is seen 
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Influence Matrix Properties

ŷ = S y
Error covariance in ŷ and covariance of the residual r=y- ŷ are related

2v a r( ) ( )σ= −r I S2ˆv a r( ) σ=y S

The change in estimate occurring when the i-th observation is deleted

( )ˆ ˆ
(1 )

i i i
i i i

i i

Sy y r
S

−− =
−



ECMWFSeminar 2003

Influence Matrix Properties

1
( )
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T r S q
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The trace of S is the amount of information extracted from the 

observations

A related result is with the leaving-out-one Cross Validation score
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CV score can be computed knowing ŷ and Sii without performing 

the m separate LS regression on the leaving-out-one samples

In non parametric statistics Tr(S) measure the degrees of freedom for 

signal
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Influence Matrix and Self-sensitivity

Definition of Influence Matrix and Self-sensitivity

are general and can be applied to non-linear prediction problems.

Interpretation remain the same as in LS and most the results as the CV 

leaving-out-one theorem still apply
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i i
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Analysis Solution

The BLUEstimate of x given y and xb in the LS sense

( )a q b= + −x Ky I KH x
4D-Var analysis is the 

solution of an appropriate 
Generalized LS 

minimization problem

1 1 1 1T T− − − −K = (B + H R H ) H R

K: (qxp)   gain matrix  
H: (pxq)  Jacobian matrix
B = Var(xb): (qxq)            
R = Var(y): (pxp)
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Solution in the Observation Space

Hxb

y

HK

I-HK

Hxb

y

HK
I-HK

The analysis projected at the observation location

ˆ ( )pa b= = + −y H x H K y H K H xI
The estimation ŷ is a weighted mean 

Hxb y

HKI-HK
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Influence Matrix

ˆ ( )p b= + −y H K y H K H xI

ˆ T T∂
= =

∂
yS K H
y

ˆ T T

b

∂
= = −

∂
yS I K H

H x

1 1 1 1( )T T− − − −=S R H B + HR H H
1 1 1( )T− − −=A B + HR H

1 1( '') T− −=S R H J H
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Synop Surface Pressure Influence
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Airep 250 hPa U-Comp Influence
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QuikSCAT U-Comp Influence
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AMSU-A channel 13 Influence
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Hessian in P variable
1( '')−A J

1 T−B = L L1−χ = L x

1 1 1''( ) ( ) ''( )T T T T T− − −= + = + =J χ I L HR H L L B HR H L L J x L

''( ) ''( )T=J χ L J x L
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Influence Matrix Computation

1

1 1

11( '') ( )( ) ( )( )
N M

T Ti
i i i i

i i i

u u
N

λ ν ν
λ

−

= =

−
= −∑ ∑J L L L L

1 1( '') T− −=S R H J H

B

A sample of N=50 random 
vectors from ù(0,1) Truncated eigenvector expansion

with vectors obtained through the 
combined Lanczos/conjugate
algorithm. M=40
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HIRS channel 11 radiances Influence

Random B Vector N=50
Hessian Vector M=40

Random B Vector N=500
Hessian Vector M=753
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Hessian Approximation ➠ B-A
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Global and Partial Influence

Global Influence = GI =
( )Tr

p
S

➮

➬

100%  only Obs Influence

0%  only Model Influence

Partial Influence   =  PI =                    
ii

i I

Ip
∈
∑S Type

Variable

Area

Level
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Global and Partial Influence

Type

SYNOP
AIREP
SATOB
DRIBU
TEMP
PILOT
AMSUA
HIRS
SSMI
GOES
METEOSAT
QuikSCAT

Area

Tropics S.HemN.Hem

Europe US N.Atl …

Level

1  1000-850
2    850-700
3    700-500
4    500-400
5    400-300
6    300-200
7    200-100
8     100-70
9      70-50

10      50-30
11       30-0

Variable

u
v
T
q
ps
Tb
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Intercept    Slope       F-test Y=X

0             3.1        p-value=0%
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METEOSAT and HIRS-11 radiances Influence
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Ill-Condition Problem

A set of linear equation is said to be ill-conditioned if small variations in 

X=(HK   I-HK)  have large effect on the exact solution ŷ,   e.g matrix close 

to singularity

A Ill-conditioning has effects on the stability and solution accuracy . A 

measure of ill-conditioning is 

m a x

m in

( ) λ
λ

X =K

A different form of ill-conditioning can results from collinearity: XXT 

close to singularity

Large difference between the background and observation error 

standard deviation and high dimension matrix
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SYNOP RH 2m Influence

Background Error Variances
Depending on T and Q 
variables
Computed at every cycle

Use of Standardized 
Humidity variable
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Flow  Dependent Fb:  MAMT+Q

DRIBU ps
Influence

b

o

σ
σ
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Information Content

Information Content  (%)
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Conclusions
The Influence Matrix is well-known in multi-variate linear regression. It is 

used to identify influential data and to predict the impact on the estimate of 
removing individual observations

An approximate method to compute the diagonal elements, self-
sensitivities, of the influence matrix in 4D-Var has been shown. The 
approximation is necessary due to the large dimension of the estimation 
problem  (106)

Influence patterns are not part of the estimates of the model but rather are 
part of the conditions under which the model is estimated

It is expected that the data have a similar influence. Disproportionate 
influence can be due to:

incorrect data
legitimately extreme observations occurrence

to which extent the estimate depends on these data
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Conclusions
For the same observation type the influence is significantly larger in data-

sparse regions than in data-dense regions
the former have much larger impact on the local  analysis error 

variance

Utility of observations in data-sparse region
Redundancy of additional observations in a well-observed region

Sii=1
Data-sparse ➠ Single observation

Model under-confident

Sii=0
Data-dense

Model over-confident ➠ tuning
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Conclusions
Observational Influence pattern would provide information on different 

observation system

New observation system
Special observing field campaign

Thinning is mainly performed to reduce the spatial correlation but also to 
reduce the analysis computational cost

Knowledge of the observations influence helps in selecting 
appropriate data density

Diagnose the impact of  improved physics representation in the linearized
forecast model in terms of observation influence
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What about Background and Observation 
Tuning in ECMWF 4D-Var?

Observations

Model
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