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1. INTRODUCTION

Thisaimof this lectureis to complementthemoretheoreticalpresentationof 3dVargivenin the“Assimilational-

gorithms”modulewith adiscussionof someof thetechniqueswhicharenecessaryfor apracticalimplementation

of the method.The ECMWF implementationof 3dVar is described.This wasthe operationalECMWF analysis

between30 January1996and24 November1997.Thereaderis referredto Anderssonet al. 1998,Courtieret al.

1998 andRabieret al. 1998 for a more detailed description.

The topics covered in this lecture are:

• The incremental method

• Initialization of analysis increments

• Formulation of the background cost function

• Methods for calculating background error statistics

2. THE INCREMENTAL METHOD

Ideally, theanalysiscostfunctionshouldbespecifiedin termsof fieldswhichhavethesameresolutionasthefore-

castmodel.However, this makesthe costfunction computationallyexpensive to minimize (especiallyin 4dVar,

where the much of the computational expense is in the tangent-linear and adjoint models.)

Theincrementalmethodreducescomputationalexpenseby minimizing a costfunctionwhich hasa lower resolu-

tion thanis usedby theforecastmodel.Thisis reasonablebecauseanalysisincrementsaregenerallyrathersmooth,

at least with current methods for specifying background error correlations.
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Theincrementalmethodis aniterative procedure.For eachiteration , anapproximateanalysis is generated

from an initial approximation  by:

(1)

Here, denotesthe pseudo-inverseof an operator which reducesthe resolutionof the modelfields to the

resolutionusedfor the cost function. (For example, might correspondto spectraltruncation.)The pseudo-

inverseof is anoperatorwhich increasesresolution(for exampleby paddingthespectrumwith zeros).In this

case,  increases the resolution of the increment  to match that of the analysis.

The increment, , is calculated by minimizing the cost function:

(2)

Note in particularthat theobservationoperator actson thehigh resolutionfields whereastheoperator

 acts on the low resolution increment.

Theincrementalmethodis describedaboveasaniterativeprocedure.However, thereis generallynoguaranteethat

theiterationswill converge. For thisreason,atypical implementationof themethodperformsonly afew iterations.

2.1  Implementation of the Incremental method in the ECMWF 3dVar

In thecaseof theECMWF 3dVar system,a singleiterationof the incrementalmethodis performed.The initial

approximation to the analysis, , is simply the background. The analysis consists of 3 steps:

2.1 (a)  Comparison with the observations at high resolution. This step calculates . The back-

groundfieldsaretransformedto gridpointspaceandtheninterpolatedto observationlocations.12-pointbi-cubic

interpolationis usedfor upper-air fields.Bi-linear interpolationis usedfor surfacefields to avoid problemsnear

surface discontinuities (e.g. coastlines) and steep orography.

Observationoperatorsareappliedto theinterpolatedmodelfieldsto calculatethemodelequivalentsof theobser-

vations.Theobservationsarecomparedwith theirmodelequivalentsandthedifferencesbetweenthetwo (i.e. the

departures)arewrittento theobservationfile, for usein theminimization.Obviously-badobservationsarescreened

out at this stage by removing observations with very large departures.

2.1 (b)  The minimization.This stepcalculatesthelow-resolutionincrement, . Thehigh-resolutionupper-

air backgroundfieldsaretruncatedto T63.Thegridpointsurfacefieldsaretransformedto spectralspace,truncated

to T63,andtransformedbackto gridpointspace.Thisensuresconsistency betweenthespectralandgridpointfields

usedin theminimization.In thecaseof the31-level model,non-linearnormalmodeinitialization (NNMI) is ap-

plied to thefieldsto adjustthemto thelow resolutionorography. (NNMI hasbeenfoundto give unsatisfactorary

resultsin the50-level and60-level versionsof themodel,sono initialization of thelow-resolutionbackgroundis

performed for these vertical resolutions.)

Thelow resolutioncostfunctionfor the incrementsis minimizedusinga quasi-Newton method(Gilbert andLe-

maréchal,1989).Variationalqualitycontrolof observationdeparturesis appliedduringtheminimization(Anders-

son and Järvinen, 1998).

2.1 (c)  Updating at high resolution. This step calculatesthe high-resolutionanalysis, .
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Sincethelow resolutionanalysisis balancedwith respectto thelow resolutionorography, it is desirableto initialize

theanalysisincrementto adjustit to thehigh-resolutionorography. However, NNMI is a non-linearprocedure.It

mustbeappliedto wholefieldsratherthanto increments.For the31-level model,thehigh resolutionanalysisis

defined as:

(3)

No initialization is performed for the 50-level and 60-level versions of the model.

3. THE BACKGROUND COST FUNCTION

Thebackgrounderrortermof thecostfunctionis crucialto theperformanceof theanalysissystem.A simpleex-

ample suffices to show why.

3.1  Example

Supposewehaveasingleobservationof thevalueof amodelfield (e.g.temperature)atonegridpoint,correspond-

ing to the elementof thestatevector. Theobservationoperatoris very simplein this case,andis represented

by the  matrix whose  element is equal to one, and whose other elements are all zero:

(4)

The gradient of the cost function is zero at the minimum, and (in the non-incremental formulation) is given by:

(5)

Multiplying through by , and rearranging gives

(6)

But, for thisexample, is simplyequalto the columnof . Also, sincewehave justasingleobservation,

is simply the scalar value , where is the analysedgridpoint value

corresponding to the observation, and where  is the variance of observation error. Thus:

(7)

Thatis, theanalysisincrementis proportionalto acolumnof thebackgrounderrorcovariancematrix, . In other

words,thebackgroundcovariancematrix controlshow informationis spreadout from thesingleobservation,to

provide statisticallyconsistentincrementsat the neighbouringgridpointsandlevels of the model,andto ensure

thatobservationsof onemodelvariable(e.g.temperature)producedynamicallyconsistentincrementsin theother

model variables (e.g. vorticity and divergence).
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3.2  Formulation of the background cost function in the ECMWF 3dVar

Thebackgrounderrorcovariancematrix is enormous,typically . This is muchtoo largeto fit into com-

putermemory. Moreover, evenif this waspossible,we don’t have enoughstatisticalinformationto determineall

its elements. We are forced to simplify things.

Oneway to approachtheconstructionof thebackgrounderrorcovariancematrix is to build amatrix for which

thevariable hascovariancematrixequalto theidentitymatrix.Thebackgroundcostfunctionmay

then be written as

(8)

The background error covariance matrix is defined implicitly by  as .

Theeffectof multplyingbackgrounderrorby thematrix is to removethecorrelationsbetweenits elements.(Re-

memberthat the correlationmatrix for is the identity matrix. That is, the elementsof areuncorrelated.)A

naturalway to build is asa sequenceof steps,eachof which removessomecorrelationfrom thebackground

error.

Themostobviouscorrelationin thebackgrounderrorsis thebalancebetweenmasserrorsandwind errorsin the

extra-tropics.Wethereforedefineour as , wherethematrix takesthemodelvariables(vortic-

ity, divergence,temperature,log(surfacepressure),specifichumidity, andozonemixing ratio) andsubtractsfrom

thetemperatureandlog(surfacepressure)componentswhicharein balancewith thevorticity. A componentis also

subtractedfrom thedivergenceto removethecorrelationbetweendivergenceandvorticity dueto Ekmanpumping

nearthe surface,andcompensatingupper-troposphericoutflow. Similarly, a balancedcomponentis subtracted

from the ozone to account for the correlation between vorticity and ozone background errors.

The balanced components of temperature, log(surface pressure), divergence and ozone are defined as:

(9)

where the matrix has the sameform as the linear balanceoperatorrelating vorticity to height, but has

coefficientswhich arestatisticallydetermined.The matrices , and accountfor the vertical correlation

between“height” (asdefinedby ) andthebalancedtemperature,log(surfacepressure),divergenceandozone.

Thesematricesareblock diagonal,with onefull verticalmatrix for eachspectralcomponent,whosecoefficients

depend only on the total wavenumber .

Thebalanceoperator, , is intendedto remove all correlationsbetweendifferentvariables.Theremainingpart

of thechangeof variable, , is thereforeblockdiagonal,with oneblock for eachof thevariables(vorticity, tem-

perature-and-log(surfacepressure),divergence,andozone).Eachblock hasthesameform, for exampletheblock

corresponding to vorticity is:

(10)

Here, divides the vorticity by its standarddeviation of backgrounderror; removes horizontal

correlation; and  removes vertical correlation.
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Division by backgrounderror standarddeviation is performedin gridpoint space,to allow a spatialvariationof

backgrounderror. However, the horizontalcorrelationsareassumedto be spatiallyhomogeneousandisotropic.

This makes  diagonal, with coefficients which depend only on the total wavenumber .

Thematrix is blockdiagonal,with oneverticalmatrix for eachspectralcomponent,whosecoefficientsde-

pendonly onthetotalwavenumber. Thisstructureallowstheverticalcorrelationsto varywith horiziontalscale,so

thatlargehorizontalscaleshave deeperverticalcorrelationsthansmallhorizontalscales.It doesnot allow spatial

variationof theverticalcorrelations.Note,however, thattheverticalcorrelationsof temperaturedovaryspatially.

This is becausein the tropics they aredeterminedby the correlationsdefinedfor the unbalancedtemperature,

whereasin middlelatitudesthey arelargelydeterminedimplicitly by theactionof thebalanceoperatoronthevor-

ticity correlation matrix.

Fig. 1 (a) shows theverticalcorrelationof temperatureerrorwith modellevel 18 of theECMWF 31-level model

(level 18 is atapproximately500hPa).ThestatisticswereestimatedusingtheNMC method(seebelow). Notethat

theverticalextentof thecorrelationis smallerin thetropicsthanin middlelatitudes.Figure1b shows thevertical

correlationsfor temperatureimplied by theJb formulation.Notethat themain latitudinalvariationin thevertical

correlations is retained.

Theeffect of thebalanceoperatorin accountingfor correlationbetweengeopotentialheightandwind is demon-

stratedby Fig. 2 , whichshows thewind incrementsgeneratedby asinglegeopotentialheightobservationat60N,

30W. In Fig.2 (a),theobservationis placedat1000hPa,andwind incrementsareshown for thenearestmodellevel

to 1000hPa.Notethatthewind incrementincludesa convergentcomponent.This is generatedby theinclusionin

thebalanceoperatorof a correlationbetweendivergenceandvorticity. Fig. 2 (b) shows thewind incrementnear

300hPa for a height observation at 300hPa. In this case, the increment is slightly divergent.

Figure  1. (a) Vertical correlation of temperature for 48h-24h forecast differences. (b) Vertical correlations of

temperature implied by the Jb formulation. The vertical axis is model level for the 31-level model.
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Figure  2. Wind increment generated by a single observation of geopotential. (a) Increments at model level 30

(near 1000hPa) from an observation at 1000hPa. (b) Increments at model level 13 (near 300hPa) from an

observation at 300hPa. In both cases, the observed height is 10m lower than the background.

Fig. 3 demonstratestheway in which informationfrom anobservation is spreadin thevertical.It shows a cross

section of the increment generated by a single temperature observation at 200hPa.

Figure  3. Cross section of the increment generated by a temperature observation at 200hPa, 60N, 30W. The

observedvalueis 0.5K warmerthanthebackground.(a)Temperatureincrement.(b) Vorticity increment(contour

interval is ). The vertical axis for both plots is model level for the 31-level model.

3.3  Calculation of the background-error correlations

Theprevioussectionshowedthat,by makingsomesimplifying assumptions,thenumberof non-zeroelementsof

thebackgrounderrorcovariancematrixmaybedrasticallyreduced.Thelargestmatricesareof of orderthenumber

of levelsof themodel,andmaybeestimatedstatisticallyfrom a sampleof backgrounderrorof sizea few times

the number of levels.

4 10 7–×
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Unfortunately, we cannotcalculatebackgrounderror, sincethis would requireknowledgeof the truestateof the

atmosphere. There are three main approaches to get round the problem:

3.3 (a)  TheHollingsworth and Lönnberg (1986) method.This methodlooksat thespatialcovarianceof dif-

ferencesbetweenobservationsandthebackground.Thesedifferencesareacombinationof backgroundandobser-

vation error. We can partition the error into backgrounderrors and observation errors by assumingthat the

observation errorsarespatiallyuncorrelated.If we bin observation-minus-backgroundasa function of distance

from each observation, only the zero-distance bin will contain a contribution from the observation error.

TheHollingsworthandLönnberg (1986)methodhastheadvantagethatit is adirectdiagnosisof backgrounderror

covariance.However, it requiresa uniform setof unbiasedobservationswith spatiallyuncorrelatederror. This

makesit unsuitablefor calculatingtheglobalstatisticsrequiredby 3dVar. In addition,themethodproducesstatis-

tics for observablequantitiessuchaswind andtemperature,whereasthebackgroundcostfunctionrequiresstatis-

tics for vorticity andunbalancedcomponentsof temperature,etc..Nevertheless,the methodremainsa valuable

tool. In particular, it canbeusedto verify thatthestandarddeviationsof backgroundandobservationerrorarecor-

rectly specified.

3.3 (b)  The NMC method (Parrish and Derber, 1992). This methodwasuseduntil recentlyin the ECMWF

3dVar and4dVar systems.Themethodassumesthatthestatisticalstructureof forecasterrorsvarieslittle over 48

hours.Underthis assumption,thespatialcorrelationsof backgounderrorshouldbesimilar to thecorrelationsof

differences between 48h and 24h forecasts verifying at the same time.

Theadvantageof themethodis thatit is straightforwardto calculatetherequiredglobalstatistics.Thedisadvantage

is thattheunderlyingassumptionthatthestatisticalstructureof 48hforecasterroris similar to thatof background

error is difficult to justify.

3.3 (c)  The analysis–ensemble method.ThemethodcurrentlyusedatECMWFto estimatebackgrounderror

statisticsis to runanensembleof independentanalysisexperiments.For eachexperiment,theobservationsareper-

turbedby addingrandomnoisedrawn from theassumeddistributionof observationerror. Theeffectof thepertur-

bationsis to generatedifferencesin theanalysesfor eachexperiment.Thesearepropagatedto thenext analysis

cycle asdifferencesin backgrounds.After a few daysof assimilation,thestatisticsof differencesbetweenback-

groundfieldsfor pairsof membersof theensembleequilibrate,andin principlebecomerepresentative of thetrue

statisticsof backgrounderror. As a furtherrefinementto themethod,theeffectof modelerrormayberepresented

by introducing random perturbations to the physical parameterizations used in the assimilating model.

Figs.4 and5 show somestatisticsof backgrounderrorcalculatedusingtheanalysis-ensemblemethod(figure4)

andtheNMC method(Fig. 5 ). Theanalysis-ensemblemethodgivesbackgroundcorrelationswhicharesmallerin

horizontalandverticalscalethanthoseproducedby theNMC method.Thebackgrounddifferencesarealsoless

balanced than the forecast differences used by the NMC method.
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Figure  4. Statistics of background error for vorticity calculated using the analysis-ensemble method. (a)

Wavenumber-averaged vertical correlation matrix. (b) Horizontal correlation as a function of model level and

great-circledistance.(c) Verticalcorrelationwith modellevel 39 (approx.500hPa)asa functionof wavenumber.

(d) Standard deviation of vorticity error as a function of model level and wavenumber.
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Figure  5. Statistics of vorticity background error calculated using the NMC method. (a) Wavenumber-averaged

vertical correlation matrix. (b) Horizontal correlation as a function of model level and great-circle distance. (c)

Verticalcorrelationwith modellevel 39 (approx.500hPa)asa functionof wavenumber. (d)Standarddeviationof

vorticity error as a function of model level and wavenumber.

3.4  Calculation of background-error variances

Thevarianceof backgrounderroris specifiedin gridpointspace.Thisallows thespatialvariability of background

errorto betakeninto account.(For example,backgrounderrorvarianceis likely to berelatively smallerin areasof

denseobservationalcoverage,thanin areaswheretherearefew observations.)In practice,only thevorticity and

specifichumidityvarianceshaveahorizontalvariationof backgroundvariancein theECMWF3dVar. (Note,how-

ever thatthebalanceoperatorimpliesahorizontalvariationof thebalancedcomponentsof theotheranalysedvar-

iables.)

For specifichumidity, backgrounderrorvariancesaregivenby anempiricalformulawhich expressestherelative
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humiditybackgrounderrorasafunctionof temperatureandrelativehumidity. Additionally, backgrounderrorsfor

humidity are reduced to very small values in the stratosphere, and are reduced at low levels over sea.

For vorticity, three-dimensionalfieldsof backgrounderrorstandarddeviation arecalculatedusinga cycling algo-

rithm (FisherandCourtier, 1995)whichappliesanempiricalerror-growth modelto adiagnosticestimationof the

standard deviations of analysis error.
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