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Abstract 

Numerical experiments with the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF) 
were devoted to the sensitivity of the modelled evaporation and precipitation to the vegetation Leaf Area Index (LAI). 
The temporally static LAI-distribution was replaced with a seasonally varying LAI, derived from Normalized Difference 
Vegetation Index (NDVI) archives. The seasonality of surface evaporation increased likewise, in combination with a 
response of increased precipitation seasonality over land. 

In a second set of experiments, the LAI-estimates were perturbed by a noise term reflecting measurement accuracy and 
interannual variability. The resulting noise in evaporation and precipitation was compared to the noise intrinsically 
generated by the atmosphere. For periods and areas where evaporation forms a large term in the surface energy balance, 
the noise added to the LAI could be clearly discerned from the atmospheric noise, indicating that improved LAI-
estimation techniques can have a detectable impact on the surface evaporation calculated in the ECMWF global model. 

1 Introduction 

The presence of vegetation has a significant effect on the regional and global hydrological cycle. Owing to 
its ability to extract water from deep soil reservoirs, it increases the hydrological ‘memory’ of the surface 
hydrological system. Furthermore, it intercepts a significant portion of precipitation, allowing for a rapid 
recycling of water by means of fast evaporation. Finally, vegetation is known to affect the surface albedo, 
thereby controlling the surface available energy. This important role of vegetation is acknowledged in most 
state-of-the art models used for Numerical Weather Prediction (NWP) and climate simulation (Dickinson et 
al, 1991; Garrat, 1993). In these models, vegetation is often characterized by the amount of (evaporating) 
leaf surface area per unit ground area, expressed as the Leaf Area Index (LAI). In most models the LAI is 
related to the efficiency of canopy evaporation by means of a so-called canopy conductance 
parameterization. High LAI values are correlated to high canopy conductance values, resulting in a relatively 
large portion of the available energy that is used for evapotranspiration (Brutsaert, 1982). 

The LAI shows a clear spatial and temporal variation. Spatially it varies with the distribution of vegetation 
biomes across the globe, resulting in high values in tropical forest areas, moderate amounts for many 
agricultural and natural vegetation biomes at mid- to high latitudes, to low amounts in tundra and (semi-) 
desert areas. The most significant time scale is the seasonal variation of many vegetation biomes, which 
produce leaf tissue during periods when radiation and soil water allow biomass production (Wilson and 
Henderson-Sellers, 1985). 

Since the late 1980s this spatial and temporal variability of LAI has been incorporated in NWP and climate 
models (e.g. Sellers et al, 1986; Koster and Suarez, 1992; Dickinson et al, 1993; Noilhan and Mahfouff, 
1996). In these implementations, LAI values (either constant in time or with a seasonal variation) were 
assigned to broad vegetation classes by means of a look-up table, and spatial distributions of these vegetation 
types were specified from climatologies as from Wilson and Henderson-Sellers (1985) or Olson et al (1983). 
However, the interpretation of the vegetation types and associated parameter assignment may vary widely 
across modelling systems, and usually does not allow to incorporate inter-annual variability of vegetation 
intensity. As an alternative, Sellers et al (1996) and Los et al (2000) developed algorithms to retrieve 
necessary information on vegetation presence and phenology using operational satellite data, in particular 
using data from the Advanced Very High Resolution Radiometer (AVHRR) on board of the polar orbiting 
National Oceanic and Atmospheric Administration (NOAA) satellites. In spite of acknowledged difficulties in 
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the retrieval of accurate vegetation information from the relatively coarse resolution (1 × 1 km) AVHRR data 
(Leprieur et al, 1994), this approach accounts for interannual variability of vegetation and spatial patterns not 
captured in the fixed vegetation type climatologies (Buermann et al, 2001). 

New satellite programs and increased understanding of the role of vegetation in the hydrological cycle enable 
the use of more realistic vegetation fields, such as LAI. An important issue is the assessment of the degree to 
which LAI measurements affects the hydrological cycle in a Atmospheric Global Circulation Model (AGCM). 
Fraedrich et al (2000) compared the hydrological cycle and atmospheric circulation patterns in the ECHAM4 
climate model for a fully vegetated world (all land area fully covered with a dense vegetation pack) and for a 
desert world (no vegetation at all). In this comparison of extreme scenario’s they found a significant 
intensification of the hydrological cycle and westerly flow patterns at the mid- and higher latitudes in the 
green-world simulations. Also less drastic sensitivity experiments with global circulation models illustrate 
the role of LAI in the partitioning of available energy over sensible and latent heat, the leaf interception and 
annual cycle of the soil water reservoir (Pielke et al 1997; Bounoua et al, 2000; Zeng and Neelin, 2000; 
Buermann et al, 2001). However, does the representation of a realistic seasonal cycle in LAI lead to 
significant changes in the hydrological cycle of an AGCM, compared to a LAI distribution remaining constant 
in time? And if so, are current accuracies of determining LAI from remote sensing observations adequate? 

These questions are addressed in this study by a numerical simulation experiment using the AGCM of the 
European Centre for Medium-Range Weather Forecasts (ECMWF). The Land Surface Parameterization (LSP) 
of this AGCM makes use of a spatial LAI distribution fixed in time (Van den Hurk et al, 2000). Using the 
retrieval algorithm of Los et al (2000) a temporal evolution was incorporated in the LAI fields used in the 
ECMWF LSP. Simulations incorporating a full annual cycle were executed to determine the impact of this LAI 
seasonality on the land surface evaporation and global precipitation. In line with the methodology presented 
by Koster et al (2000), a small ensemble of simulations was executed to separate the signal from the noise in 
the results. In a second series of ensemble simulations, a noise term was added to the seasonal LAI values to 
mimic a (random) noise in the retrieval of LAI from remote sensing observations. The impact of this noise 
was compared to the variance generated by atmospheric noise to assess the degree to which the retrieval 
inaccuracy may be expected to affect the results of the AGCM. The study is limited to the direct hydrological 
effects of LAI, i.e. the control of the canopy transpiration and interception. Changes of surface albedo in 
response to LAI-changes may be significant, but were not considered here. 

2 Methodology 

2.1 Leaf Area Index in the ECMWF land surface scheme 

The simulations in this study were carried out with an LSP scheme labelled TESSEL (Tiled ECMWF Surface 
Scheme for Exchange processes over Land), which is a component of the 1958-1998 ECMWF Reanalysis 
(ERA40). The scheme has been described and tested against results of a range of land surface measurement 
campaigns by Van den Hurk et al (2000), and is in operational use since June 2000. Common to many LSP’s, 
TESSEL partitions available radiative energy over ground, sensible and latent heat flux by means of 
parameterizations of the exchange coefficients coupling the land surface to the deep soil and the atmosphere. 
In TESSEL, this surface energy balance is solved for up to 6 subgrid land-fractions: low and high vegetation, 
snow on low or under high vegetation, bare ground, and a vegetation interception reservoir. Vegetation types 
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are assigned to each grid box using the Global Land Cover Climatology (GLCC) from the US Department of 
Agriculture (USDA). This 1 × 1 km climatology is based on a combination of  AVHRR data (April 1992 – 
March 1993), digital terrain models and supervised classification procedures (see 
http://edcdaac.usgs.gov/glcc/glcc.html. After a first classification into 94 biome types, grouping into a 
limited number of broad vegetation classes is applied. For the current study the first release (version 1.2) of 
GLCC has been used, with the vegetation type classification as defined for the Biosphere-Atmosphere 
Transfer Scheme (BATS) (Dickinson et al, 1993). 

Each grid box of the model contains three specified fractions: a fraction CH with a specified high vegetation 
type, a fraction CL with a low vegetation type, and a fraction of bare ground. Both CH and CL are obtained as 
a combination of two factors: the grid box fraction of the specified vegetation type i, and a vegetation-type 
specific vegetation cover, Cveg(i). Thus, grid boxes entirely occupied by vegetation type i are covered for a 
fraction Cveg(i) with vegetation, the rest being bare ground. The snow and interception grid box fractions are 
dynamically calculated during the simulation. For each of the vegetation types a (fixed) LAI value is assigned 
from a look-up table. The total LAI of a grid box, LAIT, is  a linear combination of the LAI from the high and 
from the low vegetation type: 

   (1) LLHHT LAICLAICLAI +=

In TESSEL there is no distinction between total and green leaf matter: all leaf area in the model is assumed to 
be biologically active and contribute to the transpiration process. 

2.2 2.2 Derivation of the seasonal Leaf Area Index fields 

Los et al (2000) describe a procedure to calculate total LAI from Normalized Difference Vegetation Index 
(NDVI) data derived from AVHRR measurements. NDVI is considered to contain information on vegetation 
density by making use of the typical different reflectivity of visible and near-infrared radiation by canopy 
leaves. The procedure of Los et al (2000) includes corrections for sensor degradation, atmospheric aerosol 
and cloud effects, and solar zenith angle variations.  A multiyear (1982-1990) dataset of biophysical 
quantities (including total LAI) is produced on a 1° × 1° grid on a monthly time scale. Input data consisted of 
the Global Area Coverage (GAC) 4 km resolution archive. Compared to other LAI datasets (for instance, 
Myneni et al, 1997) the current data set is based on a relatively long and continuous satellite data archive 
including corrections for a large number of processes known to affect the raw NDVI data. These multiyear 
total LAI estimates have been used to prescribe a seasonal cycle of the LAI-fields in the ECMWF global model 
as described below. 

The use of global distributions of vegetation types in the ECMWF-model was kept intact. However, the 
(prescribed) constant LAI values were replaced by monthly varying values. These values were obtained by 
calibrating the monthly geographically distributed NDVI-based dataset (labelled LAIN hereafter) on the 
vegetation types as used in the ECMWF global model. For each vegetation type, a selection of model 
gridboxes was made in which that vegetation type occupied more than 80% of the gridbox. A frequency 
distribution of the LAIN-values in this selection of gridboxes was constructed, giving a range of possible LAI-
values for each vegetation type. The values corresponding to the 80%-percentile of this frequency 
distribution appeared to generate a zonally averaged LAI-field that matched the zonal mean LAIN-values very 
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well, and these values were assigned to the vegetation types. In this procedure, the calibration was applied 
separately to the northern and to the southern hemisphere, thus providing two LAI-values per vegetation type 
per month.  

However, the LAI-values in the NDVI-database are assumed to represent the amount of leaf area per unit total 
ground area. In the ECMWF-model LAI-values are used to calculate the amount of leaf area per unit vegetated 
ground area, and are supposedly larger than the LAIN-data. To remove this inconsistency, also the fraction of 
ground covered by vegetation for each vegetation type was obtained from the NDVI-data. In the approach of 
Los et al (2000) the vegetation cover is constant in time but a spatially varying parameter, related to the 
maximum NDVI-value in the season. A multi-linear regression was used to associate this spatially distributed 
vegetation cover with the ECMWF vegetation types. The use of a consistent combination of LAI and Cveg 
finally results in the amount of leaf area per unit grid box area given by  

 ∑
=

=
highlowi

vegNiT iCLAICLAI
,

)(  (2) 

where the summation is over the low and high vegetation types, Cveg(i) representing the recalibrated 
vegetation coverage, and with Ci the fraction of the grid box covered with vegetation type i (see Table 1). 
This procedure generates leaf area index distributions in the ECMWF model similar to the LAIN-data by 
modifying both the LAI in the vegetated part of the ECMWF grid box and the fraction of grid box covered 
with vegetation. The change of the vegetation fraction may be associated with a change of the relative bare 
ground evaporation, in particular for grid boxes dominated by crops and short grass, where the modifications 
to Cveg where rather large. 

Cveg LAI Vegetation type 
Original New Original Min. Max. 

Crops, Mixed Farming 0.9 0.179 3 0.69 3.36 
Short Gras 0.85 0.356 2 0.41 1.78 
Evergreen Needleleaf Trees 0.9 0.623 5 1.95 4.96 
Deciduous Needleleaf Trees 0.9 0.609 5 0.08 5.54 
Deciduous Broadleaf Trees 0.9 0.777 5 0.72 5.88 
Evergreen Broadleaf Tree 0.99 0.889 6 4.89 5.14 
Tall Grass 0.7 0.449 2 0.31 1.74 
Desert 0. 0. 0. 0. 0. 
Tundra 0.5 0.363 1 0.08 2.25 
Irrigated Crops 0.9 0.569 3 0.64 1.79 
Semidesert 0.1 0.203 0.5 0.4 0.87 
Bogs and Marshes 0.6 0.365 4 0.88 4.50 
Evergreen Shrubs 0.5 0.214 3 0.80 2.36 
Deciduous Shrubs 0.5 0.595 1.5 0.43 1.35 
Mixed Forest/woodland 0.9 0.827 5 1.02 6.68 
Interrupted Forest 0.9 0.855 2.5 1.55 5.34 

Table 1 Vegetation cover and LAI per vegetation type, in the original formulation of TESSEL (Van den Hurk 
et al, 2000), and recalibrated as to match the assumed cover in the NDVI-derived LAI-product. Only 
seasonal and combined northern & southern maximum and minimum LAIN data are shown 
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Figure 1  Global distribution of LAI (m2/m2) (Eq. 2) in the ECMWF-model, using a constant value 
throughout the year (A), and as obtained from the regression on LAIN estimates derived from NDVI data 
for January (B) and July (C). 

This treatment of LAI does introduce a seasonal variation of the representation of vegetation in the TESSEL 
LSP, in common with many other surface schemes such as the Simple Biosphere Scheme (SIB; Sellers et al, 
1996), BATS (Dickinson et al, 1993) and the Interaction Soil-Biosphere-Atmosphere (ISBA) scheme (Noilhan 
and Mahfouff, 1996). However, interannual vegetation variability (for instance induced by severe droughts 
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or large scale anthropogenic land use conversions) is not represented. This is why several LSP schemes under 
development use routine satellite data in combination with a dynamic vegetation development module to 
allow for frequent updates of the vegetation distributions. 

To demonstrate the seasonality of the LAI thus obtained, Figure 1 shows the distribution of the LAI as defined 
by Equation 2 for the old situation without seasonality, and for the new distributions for January and July. 
Not only the areas dominated by crops or deciduous vegetation show a pronounced seasonality in the LAI, 
but also the areas dominated by “evergreen needleleaf trees” (for instance, large portions of the boreal 
forests) display significantly higher LAI values in summer than in winter. As may be expected, seasonality is 
limited in the tropical areas and the marginal vegetation areas in both the northern and southern hemispheres. 

2.3 Model execution strategy 

One may expect that this rather drastic change in the temporal evolution of LAI will be visible in the surface 
energy budget calculations (see below). However, of particular interest is the degree to which this seasonality 
results in a signal that can be distinguished from the noise that is inherently generated in an atmospheric 
circulation model. Therefore, simulations with the ECMWF model were executed by means of a small 
ensemble experiment. 

The simulations were initiated between 1 and 5 January 1989, 12:00 UTC, and lasted approximately 13 
months, until 1 February 1990. Results prior to 1 February 1989 (i.e. the first month) were discarded in the 
analyses in order to synchronize all ensemble members. A one year spin-up simulation was executed to 
generate the initial conditions of the soil moisture and temperature. Separate spin-up runs were executed for 
the control simulations (constant LAI) and the simulations using seasonally varying LAI (see below). The 
seasonal evolution of Sea Surface Temperature (SST) and sea ice cover were prescribed to the values used in 
the ECMWF 40-year reanalysis (ERA40). The atmospheric model was executed at a resolution of T159, 
whereas physical parameterization (including land surface processes) was operated at an approximately 
uniform gridpoint spacing of 112 km. 

Three ensembles of five runs each were executed: a control ensemble using the original constant LAI values 
(labelled CLAI hereafter), an ensemble using the seasonal varying LAI-fields as described above (labelled 
SLAI), and an ensemble using the same seasonal LAI-fields modified by a noise term (labelled NLAI). 

The generation of the “atmospheric noise”-ensemble in CLAI and SLAI was executed by initialising each run 
in these ensembles with a different atmospheric field, taken from atmospheric analyses of 1, 2, 3, 4 and 5 
January 1989, 12:00 UTC. Monthly averages of each run were calculated from 1 February 1989 onwards. 
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A random noise term added to the LAI-fields in the NLAI ensemble was designed to represent both the 
accuracy of the retrieval of LAI from multi-annual NDVI-archives, and the lack of representation of 
interannual variability when using a fixed seasonal evolution of LAI. Inspection of interannual LAI-variability 
(Behrenfeld et al, 2001; Los et al 2001) in combination with detailed analysis of various errors in the 
retrieval procedures gives rise to suspect relatively larger errors for intermediate LAI-values during the 
transition between episodes with minimum and maximum leaf area. Estimation of the seasonal minimum and 
maximum is expected to be more accurate, owing to the limits in minimum and maximum possible plant 
biomass. In this experiment, the monthly LAI-values were modified by multiplying with a random number 
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(3) 

with LAImed = 0.5(LAImax + LAImin). No temporal or spatial consistency was retained in the random numbers 
generated: each vegetation type in each hemisphere was assigned a random multiplier for each month of the 
year. Modifications assigned to the dominant vegetation types provide a relatively strong contribution to the 
globally averaged LAI. Dominant vegetation types are the classes labelled “interrupted forest” (15% of 
vegetated land area in the ECMWF model), “short grass” (13%), “semi-desert” (11%), and “evergreen 
broadleef trees” (11%). This representation of noise in the LAI fields must be considered as a high estimate of 
the true accuracy of retrieval schemes such as the one presented by Los et al (2000). In these schemes 
temporal consistency and spatial organisation of vegetation types are inherent features that may affect the 
LAI-estimates in a systematic rather than in a random way.  
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Figure 2 Monthly LAI averaged for the northern (top panel) and southern (bottom) hemispheres. Shown 
are the monthly mean values for all members of the NLAI ensemble (thin lines) and the averages for the 
SLAI and NLAI ensembles (thick lines). Vertical bars represent the standard deviation of the NLAI 
ensemble. 

 

Technical Memorandum No.391 7

 



Impact of Leaf Area Index seasonality on the annual land surface evaporation…

 

Each member of the NLAI-ensemble was initialized with the atmospheric analysis of 1 January 1989, but 
varied with respect to the monthly LAI-values assigned to each vegetation type. Figure 2 shows a time series 
of monthly averaged LAI for the SLAI and NLAI ensembles separately for the northern and southern 
hemispheres. In general the ensemble averages are within one standard deviation of the NLAI members, 
except for the northern hemisphere during winter, where the random noise assignment resulted in a slightly 
lower ensemble averaged leaf area index. The seasonality of LAI in the southern hemisphere is much less 
pronounced, as strong variation mainly occurs at land masses further away from the equator. However, the 
ensemble averaged LAI values remain within one standard deviation of the NLAI members. 

3 Results 

3.1 Seasonal versus constant LAI 

As a baseline analysis, the seasonal cycle of evaporation over all land area in each of the southern and 
northern hemispheres is plotted for the CLAI and SLAI ensembles in Figure 3. Also shown in Figure 3 is the 
standard deviation of monthly evaporation calculated from the 5 members of each ensemble. 
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Figure 3 Time series of the monthly averaged components of the surface hydrological cycle averaged 
over land: precipitation, evaporation, runoff and soil moisture change (labelled storage). Results are 
shown separately for the northern (top) and southern (bottom) hemisphere, averaged for the fixed LAI 
(CLAI) and variable LAI (SLAI) ensembles. Also shown is the standard deviation of the values calculated 
for each of the ensembles. 
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The annual average evaporation over land is very similar for both ensembles: 1.28 kg m2 day-1 for the CLAI 
experiment, 1.31 kg m-2 day-1 for SLAI. However, the seasonality of the evaporation is modified, with lower 
evaporation rates in winter and higher in summer for the SLAI runs. In the months May to September the 
averaged land surface evaporation in the northern hemisphere are different by more than the ensemble 
standard deviations, pointing at a significant impact of the LAI seasonality on the land surface evaporation 
cycle in the ECMWF model. In the southern hemisphere the difference is less pronounced. 

Land-averaged time series for the remaining surface water budget terms, i.e. precipitation, soil moisture 
change and runoff, are also shown in Figure 3. For clarity the snow budget has not been included in Figure 3, 
but the impact of the change in LAI on this term was fairly small. The increased land surface evaporation in 
the northern hemisphere in May – September results in a small increase in the total precipitation in this 
period, again differing by more than the ensemble standard deviations. Also in the southern hemisphere the 
change in land surface evaporation feeds back into a modified precipitation over land, rather than in a change 
in the other components of the surface hydrological budget. 

A change in LAI affects the surface evaporation via two different processes: a change in the interception 
reservoir, and a modification of the canopy resistance regulating transpiration. Via the latter mechanism, an 
increased seasonal cycle of transpiration is linked to decreased soil moisture storage in the summer season. 
In the simulations shown here, this apparently is compensated by an increase in precipitation that enables the 
recharge of the soil reservoir on a time scale shorter than the seasonal cycle. A modification of the 
evaporation from intercepted precipitation does not affect the soil moisture content, and the response of 
evaporation to a change in LAI is therefore small. 

Inspection of the spatial pattern in the change of the annual precipitation over land in response to a 
modification of the LAI fields reveals a strong spatial correlation with the distribution of vegetation types 
(which formed the entry to the spatial LAI-modification). Increased total annual precipitation occurred over 
areas covered with marginal vegetation types, mainly semi-desert, short grass, deciduous shrubland and 
tundra. Decreased annual precipitation was associated with areas dominated by agricultural crops and 
tropical forest. 

3.2 Impact of uncertainty in LAI-retrieval 

The analysis above has shown that land surface evaporation in the ECMWF model is clearly sensitive to the 
seasonal evolution of LAI. Global scale retrieval algorithms are able to estimate LAI values using satellite data 
with a limited accuracy.  

It is relevant to establish whether noise on the LAI-estimates generates a detectable variance in the resulting 
evaporation fields. For that reason, a new simulation experiment was conducted, in which the noise 
generated by an inaccurate LAI-estimate is compared to the noise generated by using a range of separate 
initial atmospheric fields. The accuracy of the LAI-estimates is difficult to establish objectively, but here we 
applied a random noise to the LAI-fields from the SLAI ensemble resulting in an average variance between 
10% and 25% (see Figure 2). 

The quantity addressed is the ratio of the variance of evaporation over land induced by the variability in LAI, 
σ2

NLAI, and the variance generated by the ensemble of initial atmospheric fields, σ2
SLAI. Figure 4 shows a 
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Hovmöller diagram of the zonal means of σ2
NLAI/σ2

SLAI. Spatial patterns of the same quantity display a rather 
noisy longitudinal distribution but a clear north-south gradient. The zonal means are a logarithmic average of 
σ2

NLAI/σ2
SLAI calculated for all gridboxes over land in 10° latitude bands. The logarithmic average is taken to 

avoid excessive contribution from gridboxes with extreme variance ratio values. 

 

Figure 4 Hovmöller-diagram of zonal means of the ratio s  as function of time in the year. 2 2/NLAI SLAIσ σ

It is clearly seen that in the tropical zone around the equator a significant evaporation variance is generated 
by the LAI variability. Also during the NH growing season (May – August) a clear contribution of LAI 
variability is observed, but only outside the subtropics. Also in the southern hemisphere the variability is 
small in the subtropics. The pattern on the SH shows a less pronounced seasonal cycle, which is at least 
partially due to the relatively small amount of land grid points. This pattern suggests that the contribution of 
LAI variability is strongest in areas where evaporation uses a major fraction of the available energy: in the 
dry subtropical areas (in which LAI is generally also relatively low) relative changes of the low LAI values 
will not be able to induce large relative deviations of the evaporation, which is already constrained by a lack 
of available soil water. 

At high latitudes and in winter at mid-latitudes LAI-variability does not give rise to strong changes of land 
surface evaporation. Here, limited radiative energy, snow processes and the influence of synoptic 
atmospheric activity rather than the amount of present leaf area dominate the evaporation process. 

The strong correlation between changes in LAI and changes in local annual precipitation, as suggested in the 
previous section, is not evident from a Hovmöller diagram of the variance ratio of precipitation over land, 
shown in Figure 5. A spatially consistent pattern cannot easily be discerned, except a very small tendency of 
increased variance ratios with increasing distance from the equator. 
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Figure 5 As figure 4, for the precipitation over land. 

4 Discussion and conclusions 

The work described in this paper explored the significance of imposing a seasonal cycle to the Leaf Area 
Index (LAI) in the land surface model of ECMWF. For a number of LAI-distributions, ensembles of five 
members each of one annual cycle were executed with the global model using analysed SST-fields and ice 
cover as forcing. The ensembles represented variability generated by both atmospheric noise and 
uncertainties in the LAI estimates. 

The seasonal cycle of LAI, as derived from the estimates based on NDVI prepared by Los et al (2000), results 
in an increase of the range of the annual cycle of land surface evaporation: less evaporation in the winter 
season, and more in the summer. This is well understandable from the effect of the increased leaf area on 
partitioning of available energy over sensible and latent heat loss. For stressed evaporation conditions, an 
increase of LAI will favour the use of energy for evaporation. Also the enhanced recirculation of precipitation 
by evaporation of intercepted water is responsible for this positive correlation. The increase of evaporation 
can, on a climatological time scale, only be achieved when there is a compensating source of soil water, 
either by an increased precipitation or by a reduced loss of soil water by runoff and drainage. The results of 
the present study suggest that the main response is via the evaporation – precipitation feedback; no clear soil 
moisture spin-up effects were visible after the one year spin-up simulations. Annual cycles of soil moisture 
reservoir and runoff, averaged over the northern and southern hemispheres, were much less affected. 

However, changes in the annual precipitation did not have the same sign everywhere. Precipitation increased 
over areas with marginal vegetation and decreased over cropland and tropical forest areas. Increased 
precipitation over semi-desert areas follows from an increase of both the average vegetation cover and the 
mean annual LAI (Table 1), but over short grass a decreased precipitation would have been expected given 
the strong decrease of both Cveg and LAI. However, this specific vegetation type is generally present in 
climate regions where precipitation is fairly evenly distributed over the year. This results in continuously 
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high soil water availability, enabling increased soil evaporation to compensate for reduced canopy 
transpiration. Decreased precipitation over areas dominated by crops and tropical forest may well be 
explained from reduced vegetation cover and mean annual LAI for these vegetation types. 

Also the maximum depth of the annual cycle of soil moisture varied per region. In the operational 
application of the ECMWF model as a Numerical Weather Prediction system, soil moisture adjustments based 
on forecast errors of atmospheric humidity and temperature are applied routinely to correct for possible 
biases in evaporation, precipitation and runoff. The size of the average soil moisture correction may well be 
depending on the representation of the LAI, which is suggested by the presence of a clear annual cycle in 
these corrections (Douville et al, 2000). 

Concerning the contribution of LAI-variability to variance of the surface evaporation, the results indicate that 
in areas and periods where land surface evaporation is significant, variability in the leaf area index can 
clearly be discerned from variability induced by atmospheric noise: around the equator in all seasons, and 
over mid latitudes in the northern hemisphere in the summer season. The conclusions are partially based on 
assumptions in the design of the experiment. For instance, the level of noise applied to the LAI-fields and the 
method of distributing this noise over time and space does not reflect the true accuracy with which LAI can 
eventually be estimated. Remote sensing algorithms generally have a temporal correlation in retrieval errors 
owing to the effect of assumptions in the algorithms that have a systematic impact on the estimates. This 
temporal consistency was not present in the current experiment. Also, the noise levels chosen are somewhat 
arbitrary, and could possible be justified better in the light of available remote sensing algorithms.  

The results of this study may also be affected by potential biases in the satellite data. For instance, high 
latitude needle leaf forest vegetation may be impacted by low sun angles, mixture with deciduous trees, or 
snow in winter. This class is estimated by focusing on the NDVI value in October, where deciduous 
vegetation is dormant and snow cover is still relatively low. Similarly, biases may be introduced by 
assumptions needed to convert the satellite derived LAI data into parameters used in TESSEL. Consistent with 
TESSEL, we have used total LAI from the NDVI-based database assuming that all leaf area is biologically 
active. Admittedly, this assumption has a limited validity but uncertainties in the leaf area index are only 
partially responsible for the uncertainty in the estimate of canopy transpiration. In the land surface model 
explored here canopy transpiration is regulated by a canopy conductance, which depends on other factors 
such as sensitivity to light, soil water content, atmospheric humidity and a vegetation type specific maximum 
stomatal conductance. These variables were not changed in the simulations analysed here., For instance the 
choice of the value of the minimum stomatal conductance is also crucial, but difficult to determine. As 
demonstrated in this exercise, the uncertainty of LAI-estimates may contribute systematically to the 
variability of surface evaporation, but it only partially represents the total uncertainty of canopy parameters 
that regulate transpiration. 

Also, the effects of LAI on the surface albedo were not included in this study: surface albedo varies 
seasonally over land, but in all simulations the same annual cycle of surface albedo was prescribed. A first 
order effect of LAI is to decrease the surface albedo with increasing leaf area. In general this decreased 
surface albedo may be expected to result in an increased evaporation rate, which implies an additional 
mechanism that increases evaporation with increasing LAI. The results found in this study would thus 
probably be enhanced if albedo changes had been allowed. Buermann et al (2001) concluded that this albedo 
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effect is smaller than the effect on the partitioning over sensible and latent heat in the NCAR Community 
Climate Model CCM3. Whether this is also the case for the ECMWF model used in the present study still needs 
to be confirmed. 

The variation of LAI on the seasonal time scale affected the average seasonal cycle of precipitation over land, 
but noise applied to the LAI-estimate on a monthly basis was not clearly reflected in the precipitation 
variability on this time scale. This lack of response on the monthly time scale is strongly related to the spatial 
filtering of surface flux anomalies by the atmosphere. The noise added to the LAI-fields did retain the general 
seasonal cycle of the average LAI (see figure 2) by compensating LAI-increases in certain vegetation types at 
certain locations by decreases elsewhere.  

The impact of variable LAI on precipitation variability can be considered as a superposition of the effect of 
two main mechanisms: a change of the (local) hydrological cycle, and a change of the atmospheric 
circulation patterns as a result of a modification of the spatial distribution of (latent) energy in the 
atmosphere.  Each member of the experiment ensembles has a different atmospheric circulation pattern by 
design, but it has not been tested whether the leaf area index modification has a systematic effect on the 
circulation. It is difficult to draw firm conclusions on the relative role of these mechanisms because of the 
small ensemble size. 

Koster et al (2000) analysed precipitation variability induced by variability in land surface fluxes using a 
similar procedure but mainly focussing at interannual variability. They found a strong local feedback 
between land surface processes and precipitation in the transition zones between subtropical and midlatitude 
areas, where the temporal precipitation distribution displays a strong seasonality. Repetitions of this analysis 
were carried out later with a suite of AGCM’s, and the results of Koster et al (2000) appeared to be relatively 
strong compared to the other AGCM’s involved in that later analysis (Koster et al, 2002). This implies that the 
nature of the land-atmosphere coupling in the regional and global hydrological cycle is still poorly 
understood. Future satellite missions devoted to land surface characteristics and lower atmosphere dynamics 
may prove helpful in increasing the understanding of this complex system. 
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