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Comparison of TMI rainfall estimates and their impact on 4D–Var assimilation

Abstract

The objectives of this paper are to perform a comparison between three rainfall rate estimates from TMI
(Tropical Rainfall Measuring Mission Microwave Imager) data and to study their impact in the ECMWF
four-dimensional variational (4D-Var) assimilation system. The three algorithms for rainfall estimation
considered are: PATER (Precipitation Radar Adjusted TMI Estimation of Rainfall), BAMPR–P (Bayesian
Algorithm for Microwave–based Precipitation Retrieval), and 2A12 level 5 (NASA operational algorithm).
Results from the comparison show that BAMPR–P and 2A12 retrievals provide on average higher rain rates
by about a factor 1.5 with respect to PATER mainly due to the different spatial resolutions and rain detection
methods used in the three algorithms. The three TMI products are then compared to the rainfall rates from
the ECMWF model. Globally, the rain occurence simulated by the ECMWF model is higher than in TMI
estimates. The model also produces lower rainfall rates in precipitating systems. PATER retrievals are
generally closer to the model than those from other algorithms.
Three 15–day assimilation experiments (“Rain–PATER”, “Rain–BAMPR-P” and “Rain–2A12”) were run
using the three TMI rainfall rate estimates in the ECMWF 4D-Var assimilation system. Fairly small differ-
ences were found between the global analyses and forecasts from all experiments and a control experiment
without rainfall data assimilation. This is explained by the small number of TMI rain observations which are
used per assimilation cycle compared to the other types of observational data. The local impact on analyses
was studied on two cases, namely a tropical cyclone (“Bonnie”) and a midlatitude front propagating into the
subtropics. For these two cases, the differences between the three TMI products and their associated errors
lead to significant changes in the humidity and wind analyses.

1 Introduction

The assimilation of satellite derived rain rates in numerical weather prediction (NWP) models has made impor-
tant progress during the last decade due to advances in data assimilation techniques and spaceborne instruments
(Treadon 1997; Krishnamurtiet al. 2001; Houet al. 2001; Maŕecal and Mahfouf 2002). Data assimilation sys-
tems based on the variational technique have been recently implemented in a number of meteorological opera-
tional centres. The design of variational assimilation systems allows an increasing usage of non-conventional
observations such as satellite radiances and/or geophysical products. New satellite instruments that can pro-
vide accurate estimates of precipitation from space such as the Precipitation Radar (PR) on board the Tropical
Rainfall Measuring Mission (TRMM) and the Advanced Microwave Scanning Radiometer (AMSR) on board
EOS-Aqua and ADEOS-II are becoming available. However, given the large differences in rain estimates pro-
vided by current retrieval algorithms (Smithet al. 1998) it seems important to assess their significance in terms
of data assimilation for NWP.

The European Community (EC) and the European Space Agency (ESA) jointly funded a three year project
(EuroTRMM, between 02/1998 and 02/2001) based on the use of TRMM data. The objective of EuroTRMM
was twofold: (1) to process TRMM data and generate rainfall products in order to provide assimilation or
verification data for numerical weather prediction models; and (2) to attempt the assimilation of precipitation
data in the European Centre for Medium–Range Weather Forecasts (ECMWF) forecasting system, and to use
the precipitation data for testing and tuning convection schemes. Objective (1) included the development of two
algorithms for rainfall rate estimation from TMI data: PATER (PR–Adjusted TMI Estimation of Rainfall, Bauer
2001, Baueret al. 2001) and BAMPR–P (Bayesian Algorithm for Microwave-based Precipitation Retrieval,
Mugnaiet al. 2001).

Within the EuroTRMM project, a method allowing the assimilation of surface rain rates in the operational
ECMWF 4D–Var analysis system was developed (Marécal and Mahfouf 2002). The method was tested using
NASA operational surface rain rates (2A12 product version 5). Results showed a positive impact on both
analysis and forecast performances in the tropics, in particular better trajectories of tropical cyclones were
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produced in the analyses and the forecast errors for wind and upper tropospheric temperature were reduced.

The objective of this paper is to conduct a comparative study between PATER, BAMPR–P, 2A12 products
and the model surface rain rates and to study their individual impact on the assimilation system. Results are
presented from a 2–week period in August 1998 (18/08–02/09) and two case studies from that period. A
short description of PATER, BAMPR–P and 2A12 algorithms is given in section 2. In Section 3 the algorithm
performance is analyzed with focus on sampling and resolution characteristics. In section 4 the comparison
between the model surface rain rates from the ECMWF analysis and the three TMI rain products averaged
at model resolution is discussed. Section 5 provides a brief description of the method used to perform rain
rate assimilation and an outline of the assimilation experiments. Results from these analysis experiments are
discussed in section 6. Concluding remarks and a discussion on issues related to rain assimilation from the
experiments are given in section 7.

2 Description of TMI algorithms

2.1 Bayesian framework

The Bayesian retrieval framework (e.g. Lorenc 1986) is the basis for all algorithms used in this study so that
it is only briefly summarized at this point. It makes use of the probabilities,P, of observations,yo, (here in
terms of brightness temperature vectors,TB) and atmospheric states (in terms of hydrometeor profiles or their
reduction to surface rain rate,x) due to the inherent estimate uncertainty thatx always producesyo. P(x) is the
a–priori probability ofx while P(yo) is the probability that observationyo occurs.P(yo|x) is the conditional
probability thatyo can be measured for the atmospheric statex whereasP(x|yo) is the conditional probability
that the atmospheric statex is present onceyo is observed.

P(x,yo) describes the common probability that both the atmospheric statex is present and the observationyo is
made. The joint probability is:

P(x,yo) = P(x|yo)P(yo) = P(yo|x)P(x) (1)

which leads to the Bayes rule for the a–posteriori probability:

P(x|yo) =
P(yo|x)P(x)

P(yo)
(2)

In the case of rainfall retrievals,P(x) originates from the a–priori knowledge on cloud variability and is usually
taken from cloud resolving model simulations.

P(yo|x) may be transformed toP[yo− y(x)] which is the probability of the deviations of the observations,
yo, from synthetic observations,y(x), obtained from statex using a radiative transfer model. This depar-
ture is sensitive to both observation and radiative transfer modeling errors. Assuming thatP[yo− y(x)] is a
multi–dimensional Gaussian function and that observation and radiative transfer errors are uncorrelated (Lorenc
1986):

P[yo−y(x)] ∝ exp

{
−1

2
[yo−y(x)]T [E+F]−1[yo−y(x)]

}
(3)

where(E+F) are the covariance matrices of observation (i.e. instrument noise) and modeling errors.

The best estimate of atmospheric state (i.e. the analysis,xa) may be produced from the expected value which
is identical to the minimum variance solution in this context:

xa =
∫

xP(x|yo)dx ∝
∫

P[y−y(x)]P(x)xdx (4)
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Alternatively, a maximum a–posteriori probability approach can be chosen wherexa = maxP[yo−y(x)]P(x)
(e.g. Marzanoet al. 1999).

Again, for well defined retrieval problems, the deviation from the background state has to be accounted for in
(4). For this, iterative optimization schemes towards the smallest deviations in observable and state space are re-
quired. In case of precipitation retrievals, the optimization is likely to fail due to the large number of unknowns.
Therefore,P(x) enters the integration through the number of profiles contained in an off–line database. This
database is usually obtained from mesoscale cloud model simulations because these provide consistent three–
dimensional hydrometeor distributions (Olsonet al. 1996). Of course, the lack of representativeness of these
simulations may cause serious problems in the evaluation of (4) (Bauer 2001). Under the assumption of realistic
P(x), a way to numerically calculate (4) is given by (Olsonet al. 1996):

xa = ∑i J
o[yo,y(xi)]xi

∑i Jo[yo,y(xi)]
(5)

Jo[yo,y(xi)] = exp

{
−1

2
[yo−y(xi)]T [E+F]−1[yo−y(xi)]

}
with cost–functionJo and wherexi represents an individual state profile in the database. To be exact, the mod-
eling errors,F, should be quantified for eachxi ; however, this would require the knowledge of the dependence
of radiative transfer errors on local hydrometeor profiles. The inherent uncertainty is given by the integration
of analysis values from those contained in the database:

σa
2 = ∑i J

o[yo,y(xi)](xi −xa)2

∑i Jo[yo,y(xi)]
(6)

It has to be noted that this error estimate is subject to the representativeness of the database and the assumptions
made for observation and modeling errors.

2.2 Retrieval Errors

The TRMM standard TMI algorithm 2A12 is based on the Goddard Profiling Algorithm (GPROF) which was
developed for application to aircraft data and later to satellite data from the Special Sensor Microwave / Imager
(Kummerowet al. 1996, Olsonet al. 1996). The referenced articles also describe the cloud model simu-
lations contained in the database, i.e., represented by allP(x). It employs the solution given in the previous
section wherey containsTB as well as emission/scattering indices. It also uses constraints driven by a strat-
iform/convective classification and distance–from–convection measures (Olsonet al. 2001). The latter have
been introduced between versions 4 and 5. Since the product itself contains no error information, a rough esti-
mate of 25% was given (Kummerow 1999, personal communication) to be valid on the 60 km model grid used
in the previously mentioned assimilation studies.

The PATER algorithm employs a comprehensive set of cloud resolving model simulations where the final re-
trieval database only contains those hydrometeor profiles whose simulated brightness temperatures were found
in a large set of TMI observations. This was carried out to ensure an improved representativeness in terms
of the assumptions made between (4) and (5). Due to the strong correlation between radiometer channels,
an empirical orthogonal function (EOF) analysis was carried out. It was found that 2 EOF’s explained about
98% of the variance contained in the TMI channels between 10.7 and 37.0 GHz. Both 85.5 GHz channels
were excluded because the uncertainties in the combined cloud–radiative transfer modeling increase strongly
with frequency. Therefore, the Bayesian framework explained in Section 2 was reformulated for 2 EOF’s so
that the final PATER algorithm only consists of a two–dimensional look–up table. Important to notice is that
this algorithm derives rainwater content (ing/m3) rather than rain rate (inmm/h); for conversion, the relation
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RR= 20.95·w1.12 has been used where[RR] = mm/h and[w] = g/m3. The error of this fit is well below 0.5%
for w∈ [0,2g/m3] assuming a Gamma drop size distribution with a shape parameter of one.

The PATER algorithm allows an intercomparison of PR and TMI estimates of near–surface rain liquid water
contents at the same resolution (Baueret al. 2001). Systematic differences between the two independent re-
trievals are collected in a dynamically updated database as a function of rainwater content and are subsequently
used for the correction of TMI–biases. This assumes that PR retrievals are unbiased. Within the same proce-
dure, the remaining standard deviation is calculated which serves as an estimate of the absolute TMI retrieval
error. It can be shown that in the range of 1–15 mm/h this error is mostly driven by the database ambiguity,
that is the standard deviation of multiple solutions having the same signature (Bauer 2001). Below, background
noise originating from surface, non–precipitating clouds, and atmosphere supersedes the rain signal while above
the signature from precipitating ice reduces the information on rainwater.

For the assimilation experiments described here, a preliminary fit to these errors was used:

σPATER[mm/h] = max[23.33w0.12σw,0.2RR] (7)

with σw[g/m3] = [0.1+0.45· log10(w)]w

BAMPR is based on the retrieval scheme implemented by Marzanoet al. (1999) of which the radiometer–only
version (BAMPR–P) was used here (Mugnaiet al. 2001). As for the other algorithms, selected mesoscale
simulations were combined for database construction and the Bayesian framework represents the retrieval part.
The radiative transfer was applied to slanted hydrometeor columns at cloud model resolution along the TMI
viewing angle. The simulatedTB’s were then convolved using TMI footprint dimensions. An additional
feature of BAMPR–P is the adjustment of raindrop size distributions in case of insufficient matches between
simulations and observations since these were identified as the main errors source in the BAMPR–P simulation
databases by Panegrossiet al. (1998).

The database was sub–divided into weaker and more intense rainfall regimes thus the inversion employs a scene
identification before applying the inversion methodology itself. A minimum variance scheme was adopted
without limiting assumptions on error and a–priori probability distributions. Error covariances were derived
from sensitivity tests. All TMI channels are used in the retrieval and products are provided at the resolution of
the 37.0 GHz channel footprint. The BAMPR–P errors are represented by:

σBAMPR−P[mm/h] = max[0.1,0.7RR] (8)

The retrieval errors associated with the TMI rain products from the three algorithms are compared in Fig. 1.

3 Comparison of TMI rainfall estimates

All TMI rain rate products have been defined with different spatial resolutions, namely 27 km x 44 km for
PATER and about 10 km x 16 km for both BAMPR–P and 2A12 (see Table 1). The latter, however, is inter-
polated to all 85 GHz footprint locations so that twice as many data points are provided per scan line than for
the other products. Averaging these products to match the model grid size will lead to different averaged rain
rates because of these specifications. Principally, the lower the spatial resolution of a product is, the lower the
retrieved rain rates will be. This effect has to be separated from differences in the retrievals themselves which
are caused by, for example, different retrieval databases.

To analyze the resolution/sampling part of the problem, a sensitivity test was carried out using rainfall rate
retrievals from the Precipitation Radar onboard TRMM. This eliminates retrieval algorithm differences and
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Figure 1: TMI rain rate errors used in 1D–Var as a function of the rain rate in mm/h for PATER, BAMPR–P and 2A12
products.

Table 1: Algorithm Specifications
Algorithm Reference Resolution Sampling Sensors

cross–track /
along–track

PATER Baueret al. (2001) 27 x 44 km2 10 km / 14 km TMI (PR)
BAMPR–P Mugnaiet al. (2001) 10 x 16 km2 10 km / 14 km TMI (PR)
2A12 Kummerowet al. (1996) 10 x 16 km2 5 km / 14 km TMI

allows the isolation of how sampling and spatial resolution affect the model grid spatial averages use for the
assimilation. The PR data are available over a 220 km swath centered on the TMI scan with a spatial resolution
of about 4 km along 49 beams. The conversion from effective reflectivities (including attenuation) to rain rates
was carried out as described in Baueret al. (2001) as were the 12 cases selected for evaluating the PATER
algorithm.

PR data were averaged to match TMI effective field of view (EFOV) dimensions as given by Bauer and Bennartz
(1998) for channels 1, 4, and 5 (10.7, 37.0, 85.5 GHz). Note that the 10.7 GHz resolution is enhanced by a
deconvolution technique. The averaging was carried out using synthetic TMI antenna pattern response functions
centered at the TMI footprint locations of the lower frequency channels. Thus the sampling and imaging of the
TMI is reproduced as is the rainfall statistics from the selected cases. In a second step, the TMI–equivalent rain
rates were again averaged to produce 60 km x 60 km rain rates as used for the assimilation described in the
following section. The probability distribution functions (pdf) of these rain rates are displayed in Figure 2.

Figure 2a shows the pdf’s at product resolution and sampling, respectively. Rain rates are given in dB(RR) =
10· log10RR to account for the quasi–lognormal rainfall pdf–shape. Since all products were generated with
the same sampling, the differences originate only from the spatial resolution. At PATER resolution, a shift of
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Figure 2: Probability distribution of rain rates (in dB) at product resolution (a) and averaged to 60 km grid boxes (b) for
PATER (solid), BAMPR–P (dotted), and 2A12 (dashed) from 12 representative TRMM PR overpasses including fronts,
tropical cyclones, as well as scattered and deep convection.

6 Technical Memorandum No. 364



Comparison of TMI rainfall estimates and their impact on 4D–Var assimilation

the pdf towards smaller rain rates by about 1–2 dB(RR) with respect to the others is noted. At 0.1, 1, and 10
mm/h a 1 dB shift roughly corresponds to 0.02mm/h, 0.25mm/h, and 2mm/h i.e. 20–25%. After the spatial
averaging to 60 km model grid cells, the pdf’s become more narrow and averaged rain rates are smaller than at
the original resolutions (see Figure 2b). The previously observed shift is increased up to 4 dB at low rain rates.
This corresponds to a systematic reduction of average rain rates by about 50–100% as a function of original
product resolution. The increased shift can be explained by the strong overlap of neighbouring pixels at PATER
resolution and TMI sampling vs. no overlap of BAMPR–P/2A12 pixels with the same sampling.

Comparing rainfall occurrence for the entire 2–week period shows that at product resolution PATER obtained
3,120,000 rain contaminated pixels while BAMPR–P and 2A12 retrieved 2,210,000 and 5,230,000 rain events,
respectively. The latter has to be divided by two since the 2A12 sampling is twice as high as for the other
algorithms. Thus PATER retrieves 20% more rain events than 2A12 while BAMPR–P finds 20% less events.
After the averaging procedure, 1,140,000, 970,000, and 1,200,000 samples remain for PATER, BAMPR–P, and
2A12. This suggests that apart from algorithm differences also rain detection uncertainties of 10–20% will
determine the global distributions to be assimilated.

Figure 3 presents the 2–week zonally averaged rain rates and their standard deviations from all products at
product resolution (Figure 3a, c) and averaged to model resolution (Figure 3b, d). Zonal averages are obtained
using a one degree regular grid and by accounting for rainy points only. As predicted by the previous analysis,
PATER estimates are systematically lower than those from BAMPR–P and 2A12) by a factor of 1.5–2. As
shown above, a significant portion of this originates from the lower spatial resolution of PATER. The same
holds for the standard deviations. PATER rainfall distributions are fairly smooth with little variation over
latitude. Both BAMPR–P and 2A12 reveal a large variability above -10 degrees latitude caused by very large
local rainfall gradients in the ITCZ, the Eastern Arabian Sea, the Caribbean, and East of Japan (not shown
here). This points at a different response to mainly convective rainfall by each algorithm.

In summary, when assimilating satellite rainfall products, a large contribution to the uncertainty of spatially
averaged distributions originates from rain detection skill. The spatial averaging procedure has to account for
both spatial resolution and sampling of the products which also influences the horizontal correlation of retrievals
and errors. The latter plays a significant role when calculating the spatially averaged errors (Baueret al. 2002).

4 ECWMF model analyses vs. TMI retrievals

The ECWMF model is a global spectral model. Its prognostic variables are divergence, vorticity, temperature,
specific humidity, cloud content, and cloud fraction. Rainfall rate is a diagnostic quantity produced by the
parameterizations of convection (Tiedtke 1989, Gregoryet al. 2000) and large scale condensation (Tiedtke
1993). The model version used in this study has 50 vertical levels (up to the 0.1 hPa level) and a TL319
truncation corresponding to a horizontal grid–mesh of about 60 km.

To perform the comparison with the model, the TMI rain rate estimates from PATER, BAMPR–P and 2A12
were averaged to the model resolution (as in Marécal and Mahfouf 2000) to be consistent with the model rain
rate which represents the mean of precipitation and/or no–precipitation areas in the model grid box. A simple
binning method was used to average the satellite–derived rain rate fields. TMI rain products are averaged
spatially over 6–hour periods and compared to the model instantaneous fields from the analysis at the middle
time of each 6–hour period. This implies a maximum difference of three hours between the model and the
observations. Model instantaneous rain rates are preferred for the comparison to accumulated rain rates since
the TMI swath generally overpasses a particular area once within 6 hours.

Figures 4 and 5 display the model surface rain rates together with the TMI estimates at model resolution for
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Figure 3: 2–week zonally averaged rain rates and standard deviations at product (a,c) and model resolution (b,d) from
PATER (solid), BAMPR–P (dotted), and 2A12 (dashed).

two cases studies : hurricane “Bonnie” and a frontal system in the Southern hemisphere. For “Bonnie”, three
regions of interest have been labeled: regions A, B and C (see Figure 4b). For the front case, two overpasses
are available within the time window considered (between 30/08/1998 at 21 UTC and 31/08/1998 at 03 UTC).
In the following, the North and South overpasses are noted overpass 1 and overpass 2, respectively (see Figure
5b).

In both Figures 4 and 5, the rain rate field from the model analysis has a larger spatial extent than any of the
three TMI products. For the “Bonnie” case (Figure 4) model results are closer to the PATER product in terms
of intensity in the central part of the cyclone than either BAMPR–P or 2A12 retrievals. Both provide very large
rain rates. For the front case (Figure 5), 2A12 is very similar to the model for overpass 2 while BAMPR–P and
PATER provide weaker rain rates. For overpass 1, the model rain field provides slightly less rain than all three
TMI estimates.

To give a more global picture of the model behaviour compared to TMI observations, statistics (observation
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Figure 4: Instantaneous surface rain rate in mm/h for the “Bonnie case” on 25/08/1998 at 1800 UTC (a) from the model,
(b) from PATER, (c) from BAMPR–P, and (d) from 2A12 algorithms applied to TMI observations.

- model) over a 15–day period starting on 18/08/1998 at 09 UTC and ending on 02/09/1998 at 15 UTC were
computed. Results are shown in Figure 6. Two sets of observations are considered in these statistics: all
TMI rain rate observations including zero rain rates (denoted “ALL OBS”) or positive TMI rain rates only
(denoted “OBS> 0”). Biases for the “ALL OBS” case are all negative showing that the model produces too
much precipitation on average compared to the observations. This is because the model tends to generate
precipitation more often than observed as also illustrated in Figures 4 and 5. One of the main reasons is that the
scale which is actually resolved by the model is larger than one grid length leading to smoother fields than in
the observations. For the “OBS> 0” case, larger root–mean square differences (RMS’s) and positive biases are
found for both BAMPR–P and 2A12. This is because BAMPR–P and 2A12 algorithms produce rather intense
rain rates compared to PATER algorithm (previously discussed in section 3) and compared to the model. The
PATER product is consistently closer to the model than BAMPR–P and 2A12 estimates with larger correlations
and much smaller RMS’s. The PATER algorithm produces on average smoother and less intense rain fields
than the other two.

Correlation coefficients for “ALL OBS” and “OBS> 0” are fairly low (between 0.26 and 0.38). The comparison
is performed on a fine grid-mesh (60 km) meaning that a shift of only few grid boxes of the model rainy areas
compared to observations leads to a large decrease of the correlation. Moreover, the model can only resolve
explicitly rainy systems having horizontal scales of several grid boxes. This representativeness problem has
been confirmed by comparing the model rain rates with TMI products filtered spatially using a Cressman
technique with a radius of 120 km. With smoother observed precipitation fields, the correlations of the “OBS
> 0” and “ALL OBS” are increased by about 0.1 and the biases and RMSs are decreased by a factor 2–3 (not
shown).
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Figure 5: Same as Figure 4 but for the “Front case” on 31/08/1998 at 00 UTC.

5 Assimilation experiments

The operational ECMWF assimilation system is based on an incremental four–dimensional variational (4D–
Var) method (Rabieret al. 2000; Mahfouf and Rabier 2000; Klinkeret al. 2000). 4D–Var aims at an optimal
balance between observations and the dynamics of the atmosphere by finding a model solution which is as
close as possible, in a least–squares sense, to the background information (short–term forecast) and to the
observations available over a given time period (six hours in this study).

To assimilate TMI surface rain rate observations, a “1D–Var + 4D–Var” approach was developed. In a first step,
1D–Var provides adjusted model profiles of temperature and humidity that minimize the difference between
model and observed surface rain rates within both model and observation errors (Marécal and Mahfouf 2000).
The total column water vapour (TCWV), which is the vertical integral of the specific humidity, is then computed
from the 1D–Var humidity profiles. In a second step, 1D–Var TCWV estimates are used as a new type of
observations in 4D–Var (Marécal and Mahfouf 2002). Thus in the “1D–Var + 4D–Var” approach, the rain rate
information from TMI is converted to a humidity information that can be easily assimilated in 4D–Var. Figure
7 shows a schematic flowchart of the “1D–Var + 4D–Var” method. Details on the 1D–Var and on the “1D–Var
+ 4D–Var” can be found in Marécal and Mahfouf (2000, 2002). The 1D–Var approach was chosen because
it allows the influence of this new type of observations to be evaluated without requiring too much technical
developments and computing resources. Note that since 4D–Var takes into account the temporal evolution of
any variable within the assimilation window, a modification of the analyzed humidity will induce a consistent
change of the global solution and consequently of the thermodynamic and dynamic fields.

The errors of the observed rain rates at model resolution needed in the 1D–Var retrieval were already introduced
in section 2 and Figure 1. However, rain detection errors are difficult to estimate since they depend on how
close the observation is with respect to the cloud. In the vicinity of cloud sytems this error would be larger than
in clear–sky situations. Such error estimate dependency has not been included in this study for non–raining
observations. Instead, an arbitrarily small value has been chosen. The fairly large discrepancy between rain
estimation errors shown in Figure 1 already indicates a large source of uncertainty for the assimilation of these
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Global mean statistics computed for the period between 18/08/1998 at 0900 UTC and 02/09/1998 at 1500 UTC. (a) Bias
(observations-model) in mm/h, (b) RMS in mm/h and (c) correlation.

products. While large errors pass more data into the system, their local impact is smaller because they have less
weight in the objective function defining the variational problem. With small errors, the 1D-Var quality control
defined by Maŕecal and Mahfouf (2000) will exclude more observations but they will have a stronger impact on
the analysis. Since these errors have a rain rate dependency, the relative effect of “number of observations” vs.
“impact on analysis” will depend on both model and observation rain probability distributions. A more detailed
analysis of rainfall observation errors averaged to global model grid scales is given in Baueret al. (2002).

The period selected for the 4D–Var assimilation tests is from 18/08/1998 at 1200 UTC to 02/09/1998 at 1200
UTC. Four experiments were set up to assess the impact of assimilating 1D–Var TCWV in rainy areas in the
ECMWF 4D–Var system. The first experiment is the “Control” where only the operational data set of the
considered model version is assimilated. Note that the “Control” experiment rainfall rate fields were already
used in section 5 where they were referred to as the model rainfall rate fields. The other three experiments
called “Rain–PATER”, “Rain–BAMPR–P” and “Rain–2A12” are identical to “Control” except that they also
assimilate in 4D–Var all quality–controlled 1D–Var TCWV from PATER, BAMPR–P and 2A12 rain rates, re-
spectively. The 1D–Var quality control consists of retaining TCWV retrievals only if the 1D–Var adjustment
provides a rain rate close to the observation within the observation error (Marécal and Mahfouf 2000). Conse-
quently, the behavior of the 1D–Var and then of the 4D–Var experiments will not only be changed by the use
of different rain estimates but also by different rain rate errors.
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Figure 7: Schematic flowchart of the“1D–Var + 4D–Var” method for the assimilation of TMI rain rates.

6 Results

6.1 Global impact

Figure 8 shows global background departure statistics from the 15–day period of the 4D–Var assimilation of
1D–Var TCWV for the three “Rain” experiments (“Rain–PATER”, “Rain–BAMPR–P” and “Rain–2A12”). The
observations considered here are the 1D–Var TCWV retrieved from TMI rain rate estimates.

On average 1D–Var TCWV observations from all three “Rain” experiments tend to decrease the model water
vapour to reduce the production of precipitation by the model in observed non–rainy areas. Standard deviations
for both “Rain–PATER” and “Rain–BAMPR–P” are smaller than for “Rain–2A12”. For “Rain–PATER”, this
is because PATER rain rates are relatively close to the model rain rates and thus require on average small
modifications of the humidity field in 1D–Var to adjust the observed rain rates. For “Rain–BAMPR–P”, the
reason is the large error associated with the BAMPR–P product leading to a weak constraint on the observation
in 1D–Var and thus to small humidity adjustments. The number of TCWV observations per assimilation cycle
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Figure 8: Global mean background departure statistics of 1D–VAR TCWV (in kg m−2) from “Rain–PATER”, “Rain–
BAMPR–P” and “Rain–2A12” experiments for the 15–day period.

is larger for “Rain–BAMPR–P” than for “Rain-PATER”. This shows that 1D–Var is more successful (in the
1D–Var quality control sense) in adjusting temperature and humidity within the observation error of BAMPR–
P rain rates because of its larger rain rate error. The comparison of the number of observations “Rain–2A12”
with the others is difficult since 2A12 retrievals are interpolated from a higher spatial resolution (see Table 1)
than the other two. This leads to more observations close to the coasts and islands and thus to an increase of
data in 1D–Var and then in 4D–Var.

The impact on the global mean analyzed TCWV and wind velocity fields is fairly small. Differences between
the four experiments are below 1% (not shown). This is mainly related to the low frequency of occurrence of
rainy areas within TMI coverage (about 5 % of the data is rain flagged) leading to a small number of 1D–Var
TCWV (1,000 to 2,000 per assimilation cycle) to be assimilated with respect to other types of data (∼150,000
per assimilation cycle). Nevertheless, the local impact can be important since rain–related processes lead to
latent heat exchanges that modify the dynamics. This will be investigated in the following subsection by
focusing on the analysis results obtained on the two case studies presented in section 5.

6.2 Case studies

6.2.1 Bonnie

The TCWV fields from the four analyses for the “Bonnie case” are shown in Figure 9. The three regions (A,
B and C) noted in this figure are those where the analysis fields were most strongly modified. In region A, the
three “Rain” experiments provide consistently drier atmospheres with respect to the “Control” with maximum
differences of∼4 kg m−2, ∼3 kg m−2 and∼2 kg m−2 for “Rain-PATER”, “Rain–BAMPR–P” and “Rain–
2A12”, respectively. This is related to the model behaviour (i.e. “Control” analysis) that is producing too much
precipitation compared to any of the three TMI estimates (see Figure 4). The magnitude of the modifications in
the “Rain” experiments is well correlated to the difference between the model and the three TMI rain rates. For
instance, 2A12 produces larger rain rates than BAMPR–P and PATER and consequently “Rain–2A12” exhibits
the moistest atmosphere of the three “Rain” experiments.

In regions B and C, the three “Rain” experiments produce TCWV fields that are different with respect to each
other by up to 4 kg m−2. All three provide a moister atmosphere than the “Control”. In these two regions, there
is no obvious correlation between the intensity of the TMI rain rate fields (Figure 4) and the TCWV analyzed
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Figure 9: TCWV field (in kg m−2)from 4D–Var analysis on 25/08/1998 at 1800 UTC (“Bonnie case”) (a) from “Control”
experiment, (b) from “Rain–PATER”, (c) from “Rain–BAMPR–P”, and (d) from “Rain–2A12” experiments.

field (Figure 9): the largest (weakest) rain rates are not related to the moistest (driest) TCWV field. There are
two main reasons for this. Firstly, the assimilation experiments are run in a cycling mode meaning that each
analysis benefits from all the previous analyses and thus from the TMI data that were already assimilated. This
is the reason why the “Rain-PATER” experiment is producing an increase of TCWV in regions B and C (≈6
kg m−2 at maximum) with respect to the “Control” although a reduction of precipitation was required to fit
PATER rain rate observations on the particular overpass chosen (25/08/1998 around 18 UTC). Secondly, 4D–
Var analyses depend on the availability of 1D–Var TCWV observations. This is subject to the success of the
1D–Var minimization that is related to both the rain rate estimate used and its associated error. For instance, the
BAMPR–P algorithm produces large rain rates with large errors in the central part of the cyclone. This leads
to a weak constraint in 1D–Var and thus to 1D–Var TCWV estimates close to the model background state. For
2A12 the large rain rates correspond to a smaller error meaning that in this case 1D–Var is less often successful.
However, once it is successful, the impact is more pronounced because of the large TCWV estimates provided
by 1D–Var.

Figure 10 displays the impact on the analyzed wind fields at 700 hPa from the four experiments. All “Rain”
experiments provide a more intense hurricane compared to the “Control” experiment with stronger ascents and
increased horizontal winds in the central part of the hurricane (regions B and C). Nevertheless, the three “Rain”
experiments produce analyzed horizontal and vertical winds that are significantly different. This is the direct
consequence of the changes in the analyzed TCWV. The three “Rain” experiments give wind fields that are very
consistent with the corresponding TCWV fields (Figure 9). For instance, the maximum values of TCWV are
found in “Rain–2A12” and correspond to the most intense ascending motions. In region A the impact on the
wind field for the three “Rain” experiments is smaller compared to “Control” than in regions B and C because
of the smaller TCWV modifications (mean around 2 kg m−2 for region A and 4 kg m−2 for regions B and C).
“Rain-PATER” provides a larger reduction of the convergence in region A compared to “Rain–BAMPR–P” and
“Rain–2A12” which is well correlated with a weaker TCWV field. Near the top of the hurricane, at 200 hPa,
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Figure 10: Wind field from 4D–Var analysis on 25/08/1998 at 1800 UTC (“Bonnie case”) (a) from “Control” experiment,
(b) from “Rain–PATER”, (c) from “Rain–BAMPR–P”, and (d) from “Rain–2A12” experiments. Contours are for the
vertical velocity in Pa/s. Contours are every 0.3 Pa/s wih grey shading starting below -0.9 Pa/s. In (a) arrows display
the horizontal wind. In (b) (respectively in (c) and (d)) arrows represent the difference between “Rain–PATER” analysis
(respectively “Rain–BAMPR–P” analysis and “Rain–2A12” analysis) and the ”Control” analysis.

the changes of the analyzed TCWV field due to the assimilation of TMI rain rates lead to a reinforcement of
the divergent flow with relative differences of several m/s between the three “Rain” experiments (not shown).

6.2.2 Front case

Figure 11 displays the analyzed TCWV fields from the four analysis experiments for the front case. For over-
pass 1, all three “Rain” experiments generally provide a moister atmosphere compared to “Control”. This result
is consistent with the rain rate fields (see Figure 5) which shows that the model analysis (i.e. “Control”) pro-
duces slightly weaker rain rates compared to the three TMI estimates. The three “Rain” experiments exhibit
differences of up to 3 kg m−2 for overpass 1. For overpass 2, a consistent reduction of the TCWV amounts is
found for the three “Rain” experiments with respect to “Control”. “Rain–2A12” TCWV’s are the highest with
maximum values greater than 40 kg m−2 while “Rain-PATER” and “Rain–BAMPR–P” maximum values are
∼37 kg m−2 and∼39 kg m−2. The wind field analysis at 700 hPa from the four 4D–Var assimilation experi-
ments is displayed in Figure 12. One noticeable feature is that the largest wind increments (“Rain” experiment
minus “Control”) are found in the areas where TMI rain rates are assimilated. This illustrates clearly that rain–
derived observations (i.e. 1D–Var TCWV) have a direct and significant impact on the analyzed dynamics. For
overpass 2, the decrease of precipitation needed to fit TMI observations is converted into a decrease of TCWV
leading to a consistent weakening of the front. Again, for both overpasses 1 and 2, the three “Rain” experiment
wind fields are noticeably different in terms of intensity and structure. As for the hurricane case, this is related
to the TCWV field differences. For this case study, “Rain–2A12” is generally providing smaller increments (in
absolute terms) because 2A12 product is closest to the model rain rates and thus requires less adjustment in
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Figure 11: Same as Figure 9 but for the analysis on 31/08/1998 at 0000 UTC (“Front case”).

1D–Var retrieval.

7 Conclusion and discussion

In the framework of the EuroTRMM project, two TMI algorithms for rain rate retrieval algorithms were de-
veloped and tested: PATER (Bauer 2001; Baueret al. 2001) and BAMPR–P (Mugnaiet al. 2001). These
two algorithms were compared to TRMM standard algorithm 2A12 version 5 (Kummerowet al. 1996). PA-
TER rainfall rates exhibit significant differences when compared to BAMPR-P and 2A12. PATER probability
distribution function is shifted towards low rainfall rate values. This is mainly explained by the coarser spa-
tial resolution used in PATER algorithm that smoothes the large rainfall rates and by differences in the rain
detection methods that modify significantly the contribution of the low rainfall rates.

The three TMI rain rate products (PATER, BAMPR–P and 2A12) were compared to the ECMWF model surface
rain rates over oceans (from the model analyses) for two case studies, and globally over a 15-day period.
To allow this comparison, PATER, BAMPR–P and 2A12 rain rates were averaged to the model resolution,
i.e., 60 km. The rain rate comparison exhibited large discrepancies between the model and the three sets
of observations. The model tends to produce precipitation areas which are too extended compared to the
observations. This is because the model produces light precipitation very often and can only resolve scales
larger than the nominal model grid size. In areas where rain is observed, the model generally produced weaker
rain rates compared to BAMPR–P and 2A12 products. Global mean results showed that PATER rain rates are
significantly closer to the model rain rates than the others.

The usefulness of assimilating TMI derived rain rates in the ECMWF analysis system was demonstrated re-
cently by Maŕecal and Mahfouf (2002). Because of the large discrepancies found between the three TMI
products which were considered in EuroTRMM, their individual impact on the ECMWF analyses has been
evaluated. The approach chosen for the assimilation of surface rain rates is based on the “1D–Var + 4D–Var”
method described in Marécal and Mahfouf (2000, 2002). Four assimilation experiments were run over a period
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Figure 12: Same as Figure 10 but for the analysis on 31/08/1998 at 0000 UTC (“Front case”).

of 15 days: a “Control” and three experiments assimilating 1D–Var TCWV’s retrieved from the three TMI
estimates of rain rates (PATER, BAMPR–P and 2A12). The errors associated with each of the rain products
were significantly different also affecting the 1D–Var retrieval performance. For instance, BAMPR–P rain rates
are associated with large errors providing a weak constraint on the 1D–Var minimization and consequently less
minimization failures (i.e. 1D–Var quality control failures) compared to PATER or 2A12.

Despite the large differences between PATER, BAMPR–P and 2A12 products, the four experiments were found
very similar for the global mean analysis fields of humidity and wind. This is related to the low occurrence
of rainy areas which are sampled by TMI within 6 hours (length of the assimilation window). This leads to a
small number of TMI–derived TCWV observations to be assimilated in 4D–Var (∼1% of total) compared to the
total number of data already assimilated operationally. Even though the global forecast performances for the
“Rain” experiments show an improvement of the winds and upper tropospheric temperature in the tropics when
compared to “Control”, differences found between the three “Rain” experiments were not found significant. In
this context, one has to focus on the local impact on 4D–Var analyses.

Two case studies were used to illustrate the local impact: one overpass over hurricane “Bonnie” and two
overpasses over a frontal system. They were chosen because the processes involved in the rain generation
for hurricanes and fronts are somewhat different. Our results demonstrate that for both cases, the differences
between the three rain rate estimates and their associated errors lead to noticeable modifications of the humidity
analyses (several kg m−2) in areas where TMI data were assimilated. The consequence is a significant change
of the analyzed wind fields (several m s−1) between the “Control” and the “Rain” experiments and also among
the three “Rain” experiments. These changes were very consistent with the TCWV fields. In summary, it
was shown that the 4D–Var analysis is fairly sensitive to the rain rate product and its associated error used in
1D–Var.

The “1D–Var + 4D–Var” approach used in this paper should be regarded as a first step that demonstrated
the usefulness of rain data in the ECMWF assimilation system In this approach, the rain rate information is
converted into a humidity information to be assimilated in 4D–Var. By doing so, the rain rate information is
filtered and thus its impact on the dynamics is weakened. A more advanced assimilation approach, in which
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rain rates are directly assimilated in the 4D–Var, is currently tested. Many issues linked to this approach have
to be investigated before being able to perform an optimal operational assimilation. Some of them concern
the assimilation methodology itself (configurations of the incremental 4D–Var and of the model physics) while
others rather concern the observations.

As for the “1D–Var + 4D–Var” approach, an error on the satellite–derived rain rates has to be specified in the
direct 4D–Var assimilation of rain rates. This is even more crucial for the latter since the 4D–Var minimization
performance could be easily affected by an erroneous specification of the rain rate observation errors. Thus,
it is worth emphasizing that, for variational assimilation purposes, it is absolutely necessary to have a reliable
estimate of the observed rain rate error together with any rain rate product. A more detailed study on satellite
observation errors and their averaging at model scale is given by Baueret al. (2002). In our study, TCWV
observations were assumed to be spatially uncorrelated. A usual way to overcome this problem in operational
systems is to perform a thinning by discarding observations which are too close to each other. This implies an
undesirable reduction of the number of observations to be assimilated in rainy situations.

Another related issue is the statistical distribution of the observation errors. So far, a Gaussian distribution
was used in the “1D–Var + 4D–Var” approach for the sake of simplicity. Actually, these errors are more likely
non–Gaussian. As shown by Erricoet al. (2000) the results of the minimization in a 1D–Var context are very
sensitive to the assumed distribution form. Therefore, both errors have to be available and their probability
distribution has to be accounted for.

Since many data types are already assimilated in the ECMWF 4D–Var system, the weight given to a new type of
observation should be carefully chosen. This weight depends on observation errors and background departures
(difference between the observations and the model equivalent in the observation space). Rain rates can vary
by several orders of magnitude on small spatial scales so that the background departures can be very large. On
one hand, a strict quality control is needed to avoid assimilating observations associated with large departures
because of their possible dominant weight in the assimilation. On the other hand, since rainy areas are scarce,
it is important to retain as many rain rate observations as possible in the assimilation process. This means that
a microwave algorithm providing rain rates close to the model values should be preferred in a data assimilation
system where model errors are not included.
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