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Large-amplitude nonlinear stability results for atmospheric circulations

Abstract

It is shown how large-amplitude stability results for flows governed by potential vorticity conservation can
be obtained by geometric arguments using rearrangements of functions. The resulting stability bounds are
more general than those found by weakly nonlinear methods, as they allow for non-smooth solutions. The
method also gives a framework for the rigorous treatment of the effects of mixing by increasingly fine-scale
filamentation. The methods are applied to the semi-geostrophic shear flow problem where the results can be
compared with other methods. It is shown that under the definitions used, there are no non-zonal nonlinearly
stable states in this problem. In the baroclinic case it is shown how potential vorticity conservation reduces
the ’available energy’ for the transient flow.

1 Introduction

In this paper we discuss the dynamics of large-scale atmospheric circulations using theories based on Hamil-
tonian mechanics. This is appropriate if we assume that the effect of physical forcing is to create air masses
with different properties, but that the rate of change of airmass properties is slow compared with the time-scale
of potential vorticity advection. We then regard the internal dynamics as energy conserving, with potential
temperature and potential vorticity conserved following fluid particles. The minimum energy state that is con-
sistent with potential temperature conservation is a ’rest’ state, where the air masses are rearranged so that the
potential temperature surfaces are horizontal. It is well known that the energy available to the internal dynam-
ics is the difference between the actual energy and the energy of the ’rest’ state. In this paper we explore the
additional restriction that the available energy is only the excess over that of a minimum energy state obtained
by rearranging both potential vorticity and potential temperature.

There is an important difference between minimising the energy with respect to rearrangements of potential
temperature, and minimising the energy with respect to simultaneous rearrangements of potential vorticity and
potential temperature. It can be proved that the minimum energy state with respect to potential temperature
conservation is a state with potential temperature monotonically increasing with height. States which could be
reached by mixing the fluid have a higher energy than the monotonic state. However, in most cases, we show
that the minimum energy consistent with potential vorticity conservation is reached by increasingly fine-scale
filamentation, and is actually the energy of a mixed state of the fluid. This issue is discussed by Burton and
Nycander (1999), henceforward referred to as BN, in the context of quasi-geostrophic theory. Much of this
paper is therefore concerned with identifying which states can be reached by mixing.

The advantage of using rearrangements is that stability can be established with respect to all displacements,
whether smooth or not. The method is thus more general than the energy-Casimir method used, for instance,
by Kushner and Shepherd (1995ab). It is also possible to derive results by geometrical arguments which may
be difficult to establish by algebraic methods. For instance, Ren (2000a) shows that it is very difficult to
apply Arnold’s stability methods to semi-geostrophic theory because of the nonlinear form of the potential
vorticity. This form of potential vorticity has a natural geometric interpretation, and can be readily used with
rearrangement methods.

These methods are applicable with any ’balanced model’ that conserves energy and has a conserved potential
vorticity. We use the semi-geostrophic model in this paper. BN use quasi-geostrophic theory. The methods
of analysis required are quite different for the two sets of equations, and the conclusions might well differ
in interesting ways. We obtain stability results similar to those of Kushner and Shepherd (1995ab) and Ren
(2000ab) for shear flows using Kelvin’s principles, (Thomson, 1910): firstly that steady states are stationary
points of the energy under rearrangements of the potential vorticity and potential temperature, and secondly that
stable steady states are extrema of the energy under these rearrangements. Under these definitions, we show
that the extremising states are zonally symmetric, and therefore there are no non-zonal nonlinearly stable states.
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We also show that the minimum energy state for a baroclinic flow will in general have non-zero kinetic energy,
so that the available energy for the transient flow will be less than the available energy calculated by subtracting
a rest state. This minimum energy state will have vertical variations in its potential vorticity structure unless the
given potential vorticity variations have a horizontal scale much larger than the Rossby radius of deformation.
In that case the potential vorticity structure of the minimising state becomes vertically uniform.

2 Basic method and generic results

2.1 Generic equations

We assume initially that the exact internal dynamics are governed by the incompressible Euler equations on a
regionΩ which is doubly periodic in(x,y) and confined by rigid boundaries atz= 0,H in the vertical:

Dvh

Dt
+(− f v, f u)+∇hφ = 0

Dw
Dt

−gθ/θ0 +
∂φ
∂z

= 0

∇.v = 0 (1)
Dθ
Dt

= 0

w = 0 onz= 0,H

Here,v = (u,v,w) is the wind vector withvh = (u,v) its horizontal part.φ is the geopotential,θ is the potential
temperature andθ0 is a reference value ofθ. f is the Coriolis parameter assumed constant in this geometry.
Application of these to the atmosphere requires a form of Boussinesq approximation (McWilliams (1985)).
Equations (1) conserve an energy integral, and also conserve potential temperature and the Ertel potential
vorticity

q = ( f +ζ).∇θ (2)

following fluid particles. However, potential vorticity conservation alone does not give complete information
about the velocity field. We can only determine the complete flow from knowledge of the potential vorticity if
we use an approximate set of equations, appropriate to large scale atmospheric flow. A generic form of such
equations takes the form, Hoskins et al. (1985):

DQ
Dt

= 0

D
Dt

≡ ∂
∂t

+v.∇ (3)

H (v,θ) = Q

Q is the potential vorticity, which may be the Ertel potential vorticityq defined by (2) or an approximation to
it. Inverting the operatorH determinesv andθ givenQ. Usually this requiresH to be elliptic and boundary
conditions to be specified (and there may be additional technical restrictions). Particular care is needed in
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spherical geometry, where the potential vorticity goes to zero at the equator. This case is not treated in this
paper. The simplest example is to seek fields which are in geostrophic and hydrostatic balance, and have a
specified Ertel potential vorticity. If, in addition, only the vertical component of the vorticity is considered, this
yields the equation

(
∂
∂x

( f−1 ∂φ
∂x

)+
∂
∂y

( f−1 ∂φ
∂y

)+ f

)
θ0

g
∂2φ
∂z2 = q (4)

∂φ
∂z

given onz= 0,H

This can be solved for the geopotential, and hence the geostrophic wind and temperature fields. However,
it gives no information about the time evolution. Therefore in practice the inversion has to be carried out
assuming a balanced approximation to (1) that goes beyond geostrophy. Many balanced models can be written
in the generic form (3), such as quasi-geostrophic theory, semi-geostrophic theory, and some forms of the
nonlinear balance equations. The boundary conditions are different in each case. Systems of equations derived
this way will imply the equations

∇.v = 0 (5)
Dθ
Dt

= 0

w = 0 onz= 0,H

from (1), but will correspond to an approximation of the momentum equations in (1). Equations (3) and (5) state
that the potential vorticityQ and potential temperatureθ are simultaneously rearranged by the incompressible
velocity fieldv. This means thatQ andθ stay bounded by their initial values, and the volume of fluid with given
values ofQ andθ is conserved. However, the values may be mixed on increasingly finer scales as we illustrate
in the next subsection.

Kelvin’s principle (Thomson, 1910) applied to equations (3) and (5) states that steady states are stationary points
of the energy with respect to rearrangements of the potential vorticity and potential temperature. Stable steady
states correspond to maxima or minima of the energy under such rearrangements. The variational calculation
of BN identifies a maximum energy state. Thus it is likely that there will be only a small number of globally
stable steady states corresponding to the maximum and the minimum energy that are obtainable over the whole
class of rearrangements, including mixing, but there may also be a large class of locally stable states which are
extrema of the energy subject to physically reasonable displacements.

2.2 Properties of rearrangements

We need to make extensive use of the concept ofrearrangementof a function. We begin with an intuitive
definition. Supposef is a function defined on a bounded region of real space, thought of as a continuum of
fluid particles. Suppose we exchange the particle positions, with each particle retaining its value off . This
yields a functiong, which is arearrangementof f . Roughly speaking, for any given collection of values,
the set of points wheref takes those values has the same size as the corresponding set forg. We review
some mathematical definitions and properties of rearrangements which we need to make our ideas precise.
This material is largely taken from Douglas (2001), henceforward referred to as D, which should be referred
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Figure 1: Graphs off (x) and a rearrangementg(x) of f (x). The shaded regions are those bounded below by
the liney = α and above by the graphs off andg; the areas are the same for every choice ofα.

to for further detail. If f ,g : Ω ⊂ IRn → IR are two non–negative integrable functions, i.e
∫

Ω f (x)dx < ∞,∫
Ω g(x)dx < ∞, theng is said to be arearrangementof f if

∫
Ω
( f (x)−α)+dx =

∫
Ω
(g(x)−α)+dx (6)

for eachα > 0 and where the+ subscript denotes taking the positive part of the function. This definition is
illustrated in Fig.1. We write the set of all functions which are a rearrangement of a givenf asR ( f ).

We will be considering the problem of finding the maximum or minimum of the energy which can be obtained
by rearranging a given potential vorticity distribution on isentropic surfaces. A classical approach would be
to choose a maximising (or minimising) sequence, and extract a subsequence converging to a maximiser (or
a minimiser). However, this limit might not be a rearrangement; there is the possibility of ’mixing’. It is
possible to construct an increasingly fine-grained sequence of rearrangements, which converge in a weak sense
to a smoothed potential vorticity distribution which is not a rearrangement. We give a simple one-dimensional
example. Let the functionf0 on [0,1] be defined by

f0(x) =
{

0 if x∈ [0,1/2],
1 if x∈ (1/2,1].

(7)

Define, forn∈ IN,
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Figure 2: Graphs off3(x) and f8(x) as defined in (8).

fn(x) =


0 if x = 0,
0 if x∈ (m/n,(2m+1)/2n],
1 if x∈ ((2m+1)/2n,(m+1)/n].

(8)

wherem= 0,1, ...,n−1. The functionsf3 and f8 are illustrated in Figure 2. For eachn∈ IN, fn is equal to
zero on a set of length 1/2, and equal to 1 on a set of length 1/2, thereforefn is a rearrangement off0 for each
n∈ IN. However, given any square integrable functiong on [0,1] (i.e.

∫ 1
0 g2(x)dx< ∞), it may be shown that∫ 1

0 fngdx→ 1/2
∫ 1

0 gdxasn→ ∞, that is fn converges weakly to the constant function with value 1/2, which is
not a rearrangement off0.

This occurs in situations like the filamentation at the stratospheric vortex edge. Physically, including these
limit functions can be thought of as allowing for a small but finite viscosity or conductivity. If we adopt the
strategy of trying to extract weakly convergent subsequences from an energy extremising sequence, we need
to include these limits, as discussed by D, section 2.4, and BN. (In the problem solved by BN, additional
work showed there is a solution which is a rearrangement.) A set is said to beweakly sequentially compactif
for any sequence composed of elements of the set, we can find a subsequence which converges weakly to an
element of the set. For a givenf , we seek the smallest such set which containsR ( f ). It may be characterised
(see for example Ryff 1970) as the closed convex hull of the setR ( f ), the intersection of all the (strongly)
closed convex sets that containR ( f ); we denote this setC ( f ). Douglas (1994) showed thatg∈ C ( f ) implies
(
∫

Ω g(x)pdx)1/p≤ (
∫

Ω f (x)pdx)1/p for everyp > 1. This is a formal expression of the lack of robustness of the
higher order moments of the potential vorticity as constants of the motion, and that a state which extremises
the energy may be obtained by selective decay of the higher order moments. These issues are discussed, for
instance, by Robert and Sommeria (1991), and Larichev and McWilliams (1991).
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We will make use of the following characterisation ofC ( f ) by Douglas (1994):

C ( f ) = {g≥ 0 :
∫

Ω
(g(x)−α)+dx≤

∫
Ω
( f (x)−α)+dx (9)

for eachα > 0,
∫

Ω
g(x)dx =

∫
Ω

f (x)dx.},

where the+ subscript is defined as before. This enables us to prove that rearranging a functionf , followed by
taking a local average, gives a member ofC ( f ). We make extensive use of this result in the rest of the paper.

Theorem 1 Let non-negativef : Ω → IR be square integrable, and supposeg ∈ R ( f ). For a setΓ ⊂ Ω of
positive volumeµ(Γ), define

h(x) =

{
1

µ(Γ)
∫

Γ g(x)dx≡ g if x∈ Γ,

g(x) if x∈Ω\ Γ.

Thenh∈ C ( f ).

Proof: We first prove the intermediate result that∫
Γ
(g−α)+dx≤

∫
Γ
(g(x)−α)+dx (10)

for everyα > 0. If α ≥ g, (10) follows trivially as the left hand integral is zero. Otherwise 0< α < g. Define
Γ1 = {x ∈ Γ : g(x) > α},Γ2 = {x ∈ Γ : g(x)≤ α}, andµ(Γ1),µ(Γ2) to be their respective volumes. Then∫

Γ
(g−α)+dx = µ(Γ)(g−α) =

∫
Γ

g(x)dx−αµ(Γ)

=
∫

Γ1

g(x)dx+
∫

Γ2

g(x)dx−αµ(Γ1)−αµ(Γ2)

=
∫

Γ
(g(x)−α)+dx+

∫
Γ2

g(x)dx−αµ(Γ2)≤
∫

Γ
(g(x)−α)+dx.

Now for α > 0, ∫
Ω
(h(x)−α)+dx =

∫
Γ
(h(x)−α)+dx+

∫
Ω\ Γ

(h(x)−α)+dx

=
∫

Γ
(g−α)+dx+

∫
Ω\ Γ

(g(x)−α)+dx

≤
∫

Γ
(g(x)−α)+dx =

∫
Γ
( f (x)−α)+dx. (11)

By way of explanation, the inequality in (11) follows by (10), and the equality becauseg∈ R ( f ).

Finally ∫
Ω

h(x)dx =
∫

Γ
gdx+

∫
Ω\ Γ

g(x)dx =
∫

Ω
g(x)dx =

∫
Ω

f (x)dx,

notingg∈ R ( f ). The result follows from (9).

Remark In the one-dimensional example above, withf = f0 as in (7), it can be shown (by using the characteri-
sation (9)) that any integrable functiongon[0,1] satisfying 0≤ g(x)≤ 1 for eachx∈ [0,1], and

∫ 1
0 g(x)dx= 1/2,

belongs toC ( f0). This illustrates thatC ( f0) may be a large class of functions, in particular it includes the con-
stant value 1/2 as illustrated earlier.
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A particularly useful result in our context is thatR ( f ) is weakly dense inC ( f ), that is for everyh∈ C ( f ) we
can find a sequence( fn)⊂ R ( f ) which converges weakly toh.

To proceed further, we consider the one-dimensional case and thus takef to be a non-negative function on
[0,1]. It is shown in D that there is an (essentially) unique rearrangement off which is an increasing function.
Write is as asf̃ . We will need to make use of the following result which follows from standard rearrangement
inequalities:

Theorem 2 If f (x) is non-negative and monotonically increasing forx ∈ [0,1], andg(x) is non-negative and
bounded, then

∫ 1
0 f (x)h(x)dx is maximised forh∈ C (g) by the monotonically increasing rearrangement ofg,

and is minimised by the monotonically decreasing rearrangement ofg. The reverse statements apply iff (x) is
non-negative and monotonically decreasing.

Proof D, section 2.2, quotes the standard inequality:

∫ 1

0
f (x)h(x)dx≤

∫ 1

0
f̃ (x)h̃(x)dx (12)

where f̃ , h̃ are the increasing rearrangements off ,h respectively. We havef (x) = f̃ (x) by assumption. Consider
a sequence of membershn ofR (g). It is sufficient to do this becauseR (g) is weakly dense inC (g). Thenh̃n = g̃
and in particular

∫ 1

0
f (x)hn(x)dx≤

∫ 1

0
f (x)g̃(x)dx (13)

If h is the weak limit ofhn, the inequality (13) then also applies toh, by the definition of a weak limit, giving
the first result.

SetG = Max(g(x),x∈ [0,1]. Thenĝ = G−g is non-negative on[0,1]. If hn ∈ R (g), thenG−hn ∈ R (G−g)
and (12) gives

∫ 1

0
f (x)(G−hn(x))dx≤

∫ 1

0
f (x)(G− ĝ(x))dx (14)

whereĝ is the decreasing rearrangement ofg. Cancelling
∫

f (x)Gdxand changing sign gives

∫ 1

0
f (x)hn(x)dx≥

∫ 1

0
f (x)ĝ(x)dx (15)

as required. (12) also applies iff̃ , h̃ are the decreasing rearrangements off ,h. The results for decreasingf then
follow by systematically using̃f , g̃, h̃ to denote decreasing rearrangements in the arguments above.

2.3 Minimising energy with respect to PV rearrangements, one- dimensional case

If g represents a velocity variable, then the potential vorticity (2) will depend on the derivativeg′ of g. Suppose
f ′ represents a background potential vorticity associated with the Earth’s rotation, andg′ the actual potential
vorticity. Then the velocity will be the integral of(g′− f ′), and the energy will take the form
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Figure 3: Graphs off (x) (solid line) and various choices ofh(x) obtained by settingh′(x) to be a rearrangement
of g′(x). These choices are the monotonically increasing and decreasing rearrangements, and the choiceh′(x) =
f5(x) as defined in (8).

E =
∫ 1

0
(g(x)− f (x))2dx (16)

Typically, there will also be an angular momentum constraint which means that
∫ 1

0 g(x)dx must be preserved
under the variations considered. In some cases, such as the shear flow problem treated in the next section, this
is trivial because it determines the constant of integration for calculatingg from g′. In other cases, such as
the spherical problem, we have an additional condition thath(0) = g(0) is given, and the angular momentum
constraint becomes very restrictive. Consider the following generic problem:

Problem 1Given f andg non-negative and monotonically increasing, defineC ′(g) to be the class of functions
h : [0,1]→R satisfying

∫ 1
0 h(x)dx=

∫ 1
0 g(x)dx; h′(x)∈C (g′(x)). Find the minimiser ofE =

∫ 1
0 (h(x)− f (x))2dx

for h∈ C ′(g).

Note that we requireg to be monotonically increasing to ensure thatg′, the potential vorticity, is non-negative. A
balance assumption such as (3) normally requires non-negative potential vorticity so that the inversion problem
is well-posed.

Take as an example, (Fig. 3), the case wheref (x) = x/2 andg′(x) is the functionf0(x) defined in (7), so that
g(x) = 0 : 0< x < 1

2;= 1
2(x− 1

2) : 1
2 < x < 1. It is intuitively clear that the largest energy will be obtained by

choosingh′ to be either the monotonically increasing or decreasing rearrangement ofg′. The smallest energy
will be obtained by choosingh′ to oscillate about12, the value off ′. If h′(x) = fn(x), where fn(x) is as defined
in (8), then the energy isO

(
1
n2

)
.
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This example shows that, in general, it is harder to find minimisers than maximisers because the minimiser will
typically involve mixing while the maximiser will be a strict rearrangement. The physically important case for
the global stability problem is usually an energy minimiser, because the global maximiser will often correspond
to an unreachable or unphysical state. The local stability problem may well be solved by an energy maximiser,
as in the study of BN.

Now consider the nature ofC ′(g). Theorem 1 shows that it contains all local averages. Thus in particular, given
anyx1,x2, if g(x) is replaced by its linear interpolant betweenx1 andx2, the result is inC ′(g) becauseg′(x) has
been replaced by its average value over the range(x1,x2). In the example shown, the linear interpolant between
0 and 1 gives the functionh(x) = x/2 which is justf (x). Thus f (x) ∈ C ′(g) and it is possible to find a sequence
hn(x) in R (g) with weak limith(x) = f (x) giving zero energy.

Theorem 3 (i) Given any non-negativeg(x) : x ∈ (0,1); h(x) for eachx ∈ [0,1] is maximised forh∈ C ′(g) :
h(0) = g(0) by choosingh′ to be the decreasing rearrangement ofg′. Consequently

∫ 1
0 h(x)dx is also maximised

by this choice.h(x) is minimised for eachx by choosingh′ to be the increasing rearrangement ofg′.
ii) Given h(0) = g(0), then ifg′(x) is monotonically increasing or decreasing, the only member ofC ′(g) satis-
fying all the conditions of Problem 1 isg(x) itself.

Proof . First note that ifψ(s) = 1,0≤ s< x;ψ(s) = 0,x≤ s≤ 1, then

∫ 1

0
ψ(s)h′(s)ds= h(x). (17)

The inequality (12) also applies iff̃ , h̃ are decreasing rearrangements. Apply this withf (s) = ψ(s). This gives
h(x)≤ h̃(x), whereh̃ is generated by setting̃h′ equal to the decreasing rearrangement ofh′. Equality only holds
if h̃′ = h′ and soh̃ = h. This proves the first statement in (i), with a similar argument for the reverse case. The
statements about the integral follows immediately. Part (ii) follows from part (i) because any rearrangement
of a strictly monotonically increasingh′, other than the identity map, will increase

∫ 1
0 h(x)dx, contradicting the

requirement
∫ 1

0 h(x)dx=
∫ 1

0 g(x)dx. This also applies to weak limits of rearrangements because the integrand
in (17) is linear inh′. The reverse case is proved similarly.

This result is a form of the Charney Stern theorem, showing that the energy cannot be changed by rearranging a
monotone potential vorticity distribution without violating the angular momentum constraint. We can see that
it comes from a choice of boundary conditions which allow this to be a real constraint on the flow evolution,
rather than something that can be enforced afterwards by choosing a constant of integration. Given a non-
monotone potential vorticity profile, the energy can typically be reduced under angular momentum conservation
by mixing, so filamentation of the potential vorticity will typically occur in a time integration.

In multi-dimensional problems, it is typical that the extremising states are independent of one or more spatial
coordinates. If the multi-dimensional rearrangement problem for such symmetric states can be reduced to a
one-dimensional problem, it would be possible to use the results proved above. This can be achieved by a
coordinate transformation and leads to a definition of energy of the form

E =
∫ 1

0
(g(x)− f (x))2µ(x)dx (18)

whereµ is a given function representing an area or volume element associated with the incrementdx (so in
circular symmetry we takeµ(x) = x). MinimiseE for h∈ T ′(g), the convex hull of the weighted rearrangements
of g′ defined by(h : [0,1]→ IR) ∈ T ′(g) if

∫ 1
0 h(x)µ(x)dx=

∫ 1
0 g(x)µ(x)dx, and

Technical Memorandum No. 354 9
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∫ 1

0
(h′(x)−α)+µ(x)dx≤

∫ 1

0
(g′(x)−α)+µ(x)dx (19)

for eachα > 0. If we make the change of variabledy = µ(x)dx, and define new functionsF,G by F ′(y) =
f ′(x),F(0) = f (0) andG′(y) = g′(x),G(0) = g(0), then the problem of approximatingf (x) by ah(x) ∈ T ′(g)
is identical to that of approximatingF(y) by H(y) ∈ C ′(G).

3 Stability of shear flows

3.1 Semi-geostrophic shear flows

Kushner and Shepherd (1995ab) and Ren (2000ab) have recently examined the finite amplitude stability of
shear flows using the semi-geostrophic equations. We show how similar results can be obtained for these equa-
tions by seeking maximum and minimum energy states under rearrangements of potential vorticity.

The semi-geostrophic system can be written, following Hoskins (1975), as

Dvg

Dt
+(− f v, f u)+∇hφ = 0

−gθ/θ0 +
∂φ
∂z

= 0

∇.v = 0 (20)
Dθ
Dt

= 0

( f vg,− f ug) = ∇hφ
w = 0 onz= 0,H

The notation is the same as (1) with suffix g denoting geostrophic values. In this section we illustrate stability
results where the solution regionΩ is a channel of width 2D and heightH, with periodicity 2L in thex direction,
with f constant. Define geostrophic and isentropic coordinates

X = x+ f−1vg

Y = y− f−1ug (21)

Z = gθ/ f 2θ0

The periodicity condition means thatX takes values in[−L,L], butY andZ can take any real values. Then we
can rewrite the evolution part of (20) as

D(X,Y)
Dt

= (ug,vg) (22)

DZ
Dt

= 0
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The second component of the first equation implies, on integration overx:

∂
∂t

∫ L

−L

∫ D

−D

∫ H

0
Ydxdydz =

∫ L

−L

∫ D

−D

∫ H

0
vgdxdydz (23)

=
∫ L

−L

∫ D

−D

∫ H

0
f−1 ∂p

∂x
dxdydz= 0

This is the expression of the angular momentum constraint. Following Cullen and Purser (1989), the equations
can be written as an evolution equation for an inverse potential vorticityρ in the form

Dρ
Dt

= 0 (24)

where

D
Dt

≡ ∂
∂t

+U
∂

∂X
+V

∂
∂Y

+W
∂

∂Z

U = f

(
∂R
∂Y
−Y

)
(25)

V = f

(
X− ∂R

∂X

)
W = 0

R is determined from the Monge Ampere equation

det

(
∂2R

∂(X,Y,Z)

)
= ρ (26)

for (X,Y,Z) ∈ Γ≡ ((−L,L)× (−∞,∞)× (−∞,∞)) with the boundary conditions

∂R
∂X

(X,Y,Z) = ∂R
∂X (X +2L,Y,Z)

−D≤ ∂R
∂Y

≤ D (27)

0≤ ∂R
∂Z

≤ H

The physical coordinates obey the relation∇R= (x,y,z). It is convenient to define

Ψ = R− 1
2
(X2 +Y2) (28)

Ψ acts as a stream function for the flow defined in (24). Integrating the Monge-Ampere equation overΓ gives
the compatibility conditions onρ

ρ(X +L,Y) = ρ(X−L,Y) (29)∫ L

−L

∫ ∞

−∞

∫ ∞

−∞
ρdXdYdZ= 4LDH
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Cullen and Purser show that (26) and (27) can be solved given (29). Their proof was made rigorous in the
non-periodic case by Benamou and Brenier (1998). In physical space, the solution hasX a monotone function
of x, Y of y andZ of z. Thus any sequence of solutions that can be generated by integrating these equations in
time must preserve this monotonicity property. There is no constraint on the distribution ofρ in X andY, so the
solutions of (26) and (27) can be any rearrangements ofρ which do not imply that particles change their value
of Z. This ensures potential temperature conservation. Analogously, in the quasi-geostrophic case treated by
BN, it was shown sufficient to consider rearrangements along horizontal surfaces. This is because there is no
vertical advection term in the quasi-geostrophic potential vorticity equation.

We now seek to identify stable steady states for a given initial distribution of inverse potential vorticityρ =
σ(X,Y,Z). In order to apply Kelvin’s principle we seek a class of perturbations which is dynamically consistent
with (24) and (27). We first show that this class can be written asCh(σ), defined by

ρ ∈ Ch(σ) if

{
ρ(.,Z) ∈ C (σ(.,Z)) for almost allZ∫

YρdXdYdZ=
∫

YσdXdYdZ
(30)

The first condition restricts the rearrangements ofρ to the(X,Y) variables only, and includes the weak limits.
This is similar to the space of ’stratified’ rearrangements used by BN. The additional condition is that the mean
Y over the particles cannot be changed. This corresponds to the angular momentum conservation equation (23).
We writeRh(σ) for functionsρ satisfying (30) with R replacingC .

3.2 Steady states

We next demonstrate the characterisation of steady states of the semi-geostrophic system in terms of stationary
points of the energy with respect to rearrangements. The energy for the problem (20) can be written using (21)
as

E =
∫ L
−L

∫ D
−D

∫ H
0 f 2{1

2

(
(X−x)2 +(Y−y)2

)
−zZ}dxdydz (31)

=
∫ L
−L

∫ ∞
−∞

∫ ∞
−∞ f 2{1

2

(
(X−x)2 +(Y−y)2

)
−zZ}ρdXdYdZ

Givenρ = σ(X,Y,Z) satisfying (29), seek the conditions under whichδE = 0 for perturbations toρ satisfying
ρ + δρ ∈ R (σ). These can be generated by keepingρ fixed on particles inX space and perturbingX andY
with a displacement fieldχ. The displacement must be non-divergent, so can be written as(− ∂ψ

∂Y , ∂ψ
∂X ,0) for an

arbitrary functionψ(X,Y,Z), and must satisfy the periodicity condition so thatψ(X−L,Y,Z) = ψ(X +L,Y,Z).
The restriction that the meanY cannot be changed is then automatically enforced. We then have

δE =
∫ L

−L

∫ ∞

−∞

∫ ∞

−∞
((X−x)δX +(Y−y)δY−Xδx−Yδy−Zδz)ρdXdYdZ (32)

where the integration is taken over particles, so that there is noδρ, and we have used the invariance of∫ H
0

∫ D
−D

∫ L
−L x2 + y2dxdydz. Eq. (32) can be considered as the sum of the change due to perturbing(X,Y,Z)

with (x,y,z) fixed and vice-versa. Cullen and Purser (1989) show that solutions of (20) minimise the energy at
each time instant with respect to perturbations of(x,y,z) with (X,Y,Z) fixed, so that

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞
(−Xδx−Yδy−Zδz)ρdXdYdZ= 0 (33)
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Using this within (32) and substituting the definitions ofΨ andδX gives after some manipulations

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

(
∇.

(
ψρ

∂Ψ
∂Y

,−ψρ
∂Ψ
∂X

)
−ψ

(
−∂Ψ

∂X
∂ρ
∂Y

+
∂Ψ
∂Y

∂ρ
∂X

))
dXdYdZ= 0 (34)

Assuming thatρ vanishes at a sufficiently large|Y| and requiring (34) to hold for arbitraryψ gives

− ∂Ψ
∂X

∂ρ
∂Y

+
∂Ψ
∂Y

∂ρ
∂X

= 0 (35)

This condition is precisely that for the flow to be steady as we can see from (24). Note that the linearity of
(34) in ψ means thatδE = 0 for a perturbation obtained as the limit of a sequence of perturbations defined by
displacementsψn, and thus for any perturbation toρ within Ch(ρ).

3.3 Stable steady states- barotropic case

First consider the barotropic case whereρ andσ are functions ofX,Y only, and the energy is

E =
1
2

∫ L

−L

∫ D

−D
(x−X)2 +(y−Y)2ρdXdY (36)

We seek to extremiseE for ρ ∈ Ch(σ), i.e. ρ ∈ C (σ) with

∫ L

−L

∫ D

−D
YρdXdY=

∫ L

−L

∫ D

−D
YσdXdY. (37)

We characterise steady states which are stable by requiring the stationary point of the energy to be an extremum.
It is clear that the maximum energy attainable under these conditions is infinite. Generate a rearrangement by
a displacementψ = Asin(πkX/L), implying δX = 0,δY = Aπk

L cos
(πkX

L

)
. Since|y| < D for all particles, (31)

shows thatE → ∞ asA→ ∞. It is therefore only meaningful to seek minimum energy states. In the stability
problem for the barotropic vorticity equation, however, the maximum energy state is well defined. This is
because the evolution equation is written in physical space and so the displacements have to be within the
physical domain. Thereforeψ = 0 on the domain boundaries. This problem was treated by Burton and McLeod
(1991).

Givenσ, we seek to minimiseE for ρ ∈ Ch(σ). (31) shows that the minimum energy is attained by making the
map from(X,Y) to (x,y) as close as possible to the identity mapx = X,y = Y. Therefore we expect that the
minimum energy will be achieved by mixing the values ofσ to give a mappingι defined by

ι = 1 : |Y−Y0| ≤ D,X ≤ |L| andι = 0 elsewhere, (38)

with Y0 chosen to satisfy the angular momentum constraint. Then (24) shows that the velocity will be(− fY0,0)
for all (x,y). This will give the lowest energy consistent with the requirement that the mean velocity and hence
angular momentum is fixed. This distribution is not always achievable by mixing the givenσ, as we show in
the following lemma:
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Figure 4: Graphs ofσ(Y) againstY for the cyclonic and anticyclonic cases defined in the text and the rest state
σ(Y) = 1, |Y| ≤ D.The base values are shifted for clarity

Lemma 4 If the support ofσ has area greater than 4DL, then the mapι given by (38) is not inCh(σ).

Proof By assumption, there is anε > 0 such that the area of the set withσ > ε is greater than 4DL. Then

∫ L

−L

∫ ∞

−∞
(σ− ε)+dXdY≤

∫ L

−L

∫ ∞

−∞
σdXdY−4DLε =

∫ L

−L

∫ ∞

−∞
(ι− ε)+dXdY.

This contradicts the condition (9) for ι to be inCh(σ).

Fig. 4 shows the three possibilities forσ, assumingY0 = 0. Recalling thatσ is the inverse potential vorticity,
the anticyclonic case corresponds toσ > 1. The distribution shown can be mixed to give the rest stateι shown
below it. The cyclonic case hasσ < 1, Lemma 4 applies, andσ cannot be mixed to giveι. In that case, the
minimum energy will be obtained by getting as close toι as possible

Theorem 5Givenσ(X,Y) satisfying (29) with compact support of areaµ. If µ> 4DL, the minimiser of E over
Ch(σ) takes the form

ρ = 1 : |Y−Y0| ≤Y1,
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= σ̃ : Y1 < |Y−Y0| ≤ µ/4L, (39)

= 0 otherwise

whereσ̃ is a monotonically decreasing function of|Y−Y0| and 0≤ Y1 < µ/4L. Y0 is chosen to satisfy the
angular momentum constraint. Ifµ≤ 4DL the minimiser isρ = ι, whereι is defined by (38).

Proof First prove that the mean value requirement can be separated. ChooseY0 to satisfy

∫ L

−L

∫ ∞

−∞
Y0ρdXdY=

∫ L

−L

∫ ∞

−∞
(y−Y)ρdXdY (40)

Then setY = Y0 +Y′. Since the physical domain is centred abouty = 0, we have
∫ L
−L

∫ ∞
−∞ yρdXdY= 0. (40)

then shows that
∫ L
−L

∫ ∞
−∞Y′ρdXdY= 0. We can write the energy as

1
2

∫ L

−L

∫ ∞

−∞
((x−X)2 +(y−Y)2)ρdXdY

=
1
2

∫ L

−L

∫ ∞

−∞
((x−X)2 +Y2

0 −2Y0(y−Y′)+(y−Y′)2)ρdXdY (41)

=
1
2

∫ L

−L

∫ ∞

−∞
((x−X)2 +Y2

0 +(y−Y′)2)ρdXdY

We can therefore useY0 to satisfy the angular momentum constraint, and solve the energy minimisation problem
for Y′, with

∫ L
−L

∫ ∞
−∞Y′ρdXdY= 0. In the subsequent steps we assume that this has been done, and drop the

primes.

The next step is to show that the minimiser is independent ofX. Givenσ, construct the images of the coordinate
linesy = yn as curvesY = Yn(x). If Yn is discontinuous as a function ofx, the missing segment is interpolated
as a straight line. Suppose that we choosey−n =−yn. Then

∫ L

−L

∫ Yn

Y−n

σdXdY= 4Lyn (42)

Construct a new distribution with the image ofyn beingYn = 1
2L

∫ L
−LYn(x)dx. Note that the averaging is inx,

notX. This implies a new distributionσ of ρ which satisfies

∫ L

−L

∫ Yn

Y−n

σdXdY= 2L
∫ Yn

Y−n

σdY (43)

for all n. Thusσ is obtained as a local average, and Theorem 1 shows thatσ ∈ C (σ). Note thatσ is not a strict
rearrangement ofσ in general, particularly if discontinuities are present. We now write the energy as an integral
over physical space:

1
2

∫ L

−L

∫ D

−D
((x−X)2 +(y−Y)2)dxdy (44)

Using the definition ofYn, we have
∫ L
−L(yn(x)−Yn(x))dx= 2L(yn−Yn). Since this holds for alln, we can make

the obvious definitionY = 1
2L

∫ L
−LY(x)dx and writeY = Y +Y′. Then
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1
2

∫ L

−L

∫ D

−D

(
(x−X)2 +(y−Y)2)dxdy

=
1
2

∫ L

−L

∫ D

−D

(
(x−X)2 +(y−Y)2−2yY′+2YY′+Y′2

)
dxdy (45)

=
1
2

∫ L

−L

∫ D

−D

(
(x−X)2 +(y−Y)2 +Y′2

)
dxdy

Eq. (45) shows that the energy is not increased by replacingY by Y, so the energy minimiser is independent of
x andX.

We now have to findρ as a function ofY only which minimises the energy. We start from a distribution
σ(Y) ∈ Rh(σ) satisfying

∫ ∞
−∞YσdY = 0. This choice is not unique, but that does not affect the argument. Note

first that the minimiser will be symmetric abouty = 0 and therefore aboutY = 0. This is because, given a
generalY(y):

2
∫ D

0
(y− 1

2
(Y(y)−Y(−y))2dy≤

∫ D

−D
(y−Y)2dy (46)

and thusY = 1
2(Y(y)−Y(−y)) gives a lower energy. We therefore assume thatσ(Y) is symmetric aboutY = 0

and so work onY ∈ [0,∞) only. Theorem 3 shows thaty is maximised for allY ∈ [0,∞) by choosingρ to be
the decreasing rearrangement ofσ onY ∈ [0,∞). There are then two cases to consider, as shown in Fig.4. First
assumeσ(Y)≤ 1 ∀Y. Theny(Y) < Y : ∀Y ∈ [0,∞). The decreasing rearrangement ofσ gives the largest value
of y for eachY, and hence the smallest value ofY for eachy. Thus it must be the minimiser of

∫
(y−Y)2dy.

This solution corresponds to (39) with Y1 = 0.

Next assume thatσ(Y) > 1 for someY. Again chooseρ to be the decreasing rearrangement ofσ(Y), giving
the maximum possible valueym(Y) of y for eachY. The assumption means that, for someY, ym(Y) > Y.
Choose the largestY, sayYM, for which this is true. According to Theorem 1, we can replacey(Y) by its linear
interpolant over any range ofY while staying withinC (σ). Thus ifYM = D, we can choosey(Y) = Y, 0≤Y ≤
D, y(Y) = D, Y > D and obtain zero energy. Otherwise, choosey(Y) = Y for Y ≤ YM andy(Y) = ym(Y) for
Y > YM. By the definition ofYM, ym(Y) < Y for Y > YM. Theorem 3 states that no larger values ofy for eachY,
and therefore no smaller values ofY for eachy, can be obtained withinC (σ). Therefore this choice minimises∫
(y(Y)−Y)2dy, as required.

Theorem 5 shows that the only minimum energy states are distributions independent ofX with ρ ≤ 1 every-
where. Sinceρ is an inverse potential vorticity, this condition excludes values of potential vorticity less than 1,
which correspond to anticyclonic relative vorticity. This agrees with the result of Kushner and Shepherd (1995)
that there were no stable shear flows with anticyclonic shear. This argument also shows that no steady states
with anticyclonic relative vorticity can be stable in any limited domain with rigid boundary conditions under
semi-geostrophic dynamics. They could be stable in doubly periodic flows, because there is then no region with
ρ = 0 in the(X,Y) plane to mix with the non-zero values. Ren (2000a) discusses the physical relevance of this
stability condition, suggesting that it may be most physically relevant in the baroclinic case.

3.4 Baroclinic case

If σ depends onZ, write µ(Z) = 1
2max(S(Z),2D), where 2LS(Z) is the area over whichσ(X,Y,Z) is non-zero.

SetM = maxZ(µ(Z)), for all Z. Sinceσ can only be rearranged onZ surfaces, we expect the energy minimiserρ
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Figure 5: The region of the(Y,Z) plane for whichρ is non-zero in the energy minimising state for the two
extreme cases; total shaded area:f l/NH� 1, light shaded area:f l/NH� 1 .

to be obtained by first assuming zero angular momentum on eachZ surface, and minimising the energy on each
Z surface separately using Theorem 5. It may then be advantageous to remove theZ dependence by mixingσ
uniformly over the whole region|Y| ≤M. The angular momentum constraint, which is vertically integrated, is
then used to displace the entire solution by some distanceY0 in Y. For eachZ, the size of the set for whichρ
is non-zero cannot be less than that for whichσ is non-zero. However, zero values can be mixed in to increase
the size of the set to 4DL for eachZ. If M ≤ D, σ can be mixed to giveρ as a function ofZ only whose energy
will be the minimum rest state potential energy. However, ifM > D, this state is not inCh(σ). There then has
to be kinetic energy in the minimum energy state. These situations are illustrated in Fig. 5.

We formalise these procedures in:

Theorem 6(i) The distributionρ = constant, |Y| ≤D, = 0, |Y|> D is inCh(σ), as defined in (30), if M≤D. If
so, then this distribution minimises the energy (31) overCh(σ) and the geostrophic wind takes a uniform value
on Ω. This value is equal to the minimum rest state potential energy if the specified angular momentum is also
zero.

(ii) If the specified angular momentum is zero, the minimum possible kinetic energy achievable forρ∈ Ch(σ) is∫ ∞
−∞ 4L

∫ µ(Z)
D (D−Y∗)2ρ∗dYdZ, whereρ∗(Y) is the decreasing rearrangement ofσ(Y) for eachZ anddY∗/dy=

(ρ∗)−1. σ(Y) is as defined in the previous subsection.

(iii) The potential energy is minimised forρ ∈ Ch(σ) by choosingρ to take a uniform value for|Y−Y0| ≤M
for eachZ.

Proof (i) Theorem 1 applied at each value ofZ shows that replacingσ by its mean value over its support gives
a memberρ of Ch(σ). If S(Z) < 2D, we can then averageρ over a set with area 4DL which includes its support.
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This area can then be rearranged to be the set(X,Y)∈ (−L,L)×(−D,D). The angular momentum is then zero,
and the constraint can be satisfied by translatingρ to be non-zero on the set(X,Y)∈ (−L,L)×(−D+Y0,D+Y0)
for eachZ. ρ is now a function ofZ only. The potential energy

∫
Ω−zZdxdydzis minimised, as in Theorem 2,

by choosingZ to be a monotonically increasing function ofz. The geostrophic wind is equal to− fY0 for all
(x,y,z) ∈Ω.

(ii) We start by assuming a distributionσ(Y) which is independent ofX and symmetric aboutY = 0. If no more
information is given aboutσ, we can only state that kinetic energy is implied by that part of the support of
ρ ∈ Ch(σ) which has|Y|> D. Sinceσ cannot be rearranged except onZ surfaces, this is the regionD < |Y| ≤
µ(Z) for eachZ. Since|y| ≤ D for all Y, the kinetic energy associated with this region is at least 4L

∫ µ(Z)
D (Y−

D)2ρ(Y)dY. According to Theorem 2, this quantity will be minimised by choosingρ to be the monotonically
decreasing rearrangement ofσ. The arguments used to prove Theorem 5 show that no lower estimate can be
produced if we start from aσ which depends onX and is not symmetric aboutY = 0.

(iii) By Theorem 2, and because the integral ofρ cannot be changed on anyZ surface, the potential energy is
minimised by takingz to be a monotonic function ofZ only. The choice ofρ in (iii) above achieves this because
ρ depends onZ only within |Y| ≤M, andρ is zero elsewhere. Thus this choice has potential energy equal to
the minimum possible value.

If the rest state distribution{ρ = constant, |Y| ≤ D, = 0, |Y| > D} /∈ Ch(σ), then the solution will contain
kinetic energy even if the specified angular momentum is zero. The solution will be scale-dependent, according
to whether potential or kinetic energy perturbations contribute more to the total energy. Since the mapping
to physical space generates a geostrophic and hydrostatic state with geopotentialφ, the kinetic energy is of
order( f l)−2 and the excess potential energy is of orderN2h2, wherel andh are the horizontal and vertical
length scales of the perturbations to the rest state geopotential, andN2 is the Brunt-Vaisala frequencygθ0

∂θ
∂z.

Thus if f l/Nh� 1, i.e. the horizontal length scale is smaller than the Rossby deformation radius, it is most
important to minimise the kinetic energy. The distribution of Theorem 6(ii) requires there to be less kinetic
energy than that of Theorem 6(iii), since there only has to be kinetic energy associated with values ofZ for
which µ(Z) > D. The minimum energy state will thus beZ dependent. Iff l/Nh� 1, it is most important to
minimise the potential energy. This is achieved by the distribution of Theorem 6(iii). In this case the horizontal
length scale of the potential vorticity perturbations is large compared with the deformation radius. The energy
maximising state found by BN for the three-dimensional quasi-geostrophic case also minimises thez variation
of the potential vorticity distribution, and is thus like our result for large horizontal scales.

In general, we have shown that there are minimum energy states with more energy than the rest state potential
energy. This gives more control over the possible dynamic evolution of the system, since only the excess energy
above this minimum value is available for transient motion.

4 Discussion

We have used rearrangement theory to obtain nonlinearly stable states by extremising energy subject to potential
vorticity displacements. The method allows non-smooth variations of potential vorticity, and allows weak limits
corresponding to solutions with filamentary potential vorticity structure to be treated rigorously. We therefore
do not have to extremise subject to a constraint like enstrophy conservation, which would not be robust in real
flow due to small scale mixing. We have applied the methods within semi-geostrophic theory, though they
could, as in BN, be applied to other balanced models. In semi-geostrophic theory this approach avoids the
difficulties caused to other methods by the nonlinear form of potential vorticity. In many cases there are no
non-trivial stable steady states which are energy minimisers. The interesting results are when there are. In the
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shear flow case, stable steady states may have kinetic energy and, on scales not too large compared with the
deformation radius, also be baroclinic.

Possible applications include the problem of minimising the energy of the flow on the sphere. The recent
generalisation of semi-geostrophic theory to the sphere by Cullen and Douglas (1999), which retains potential
vorticity conservation, could be used for this purpose. Another is the problem of minimising the energy of the
flow in a circular ocean basin over circularly symmetric bottom topography. This is a version of a classical
problem discussed, amongst others, by Holloway (1986). An alternative problem in the same context is to min-
imise the potential enstrophy while keeping the energy fixed. This was shown by Adcock and Marshall (1999)
to be a good way of predicting the natural attracting state of general unsteady flow over bottom topography. It
would also be interesting, following BN, to analyse locally stable states using semi-geostrophic theory. As they
discuss, these states may well be good models of ’blocking’ patterns.
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