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Abstract

In this paper we explore the structure and dynamics of the optimal perturbations of low-frequency coupled
ocean-atmosphere oscillations using a hierarchy of hybrid coupled models. Each model is configured for
the tropical Pacific ocean and shares a common ocean general circulation model. Three different atmo-
spheric models are used: a statistical model, a dynamical model, and a combination of a dynamical model
and boundary layer model. Each coupled model possesses a coupled ocean-atmosphere eigenmode oscil-
lation with a period of the order of several years. The properties of these various eigenmodes and their
corresponding adjoint eigenmodes are explored.
The optimal perturbations of each coupled model for two different perturbation growth norms are also
examined, and their behaviour can be understood in terms of the properties of the aforementioned eigenmode
oscillations. It is found that the optimal perturbation spectrum of each coupled model is dominated by one
member. This dominant optimal perturbation evolves into the most unstable eigenmode of the system.
The structure of the optimal perturbations of each model is found to be controlled by the dynamics of the
atmospheric model and air-sea interaction processes. For the coupled model with a statistical atmosphere,
the optimal perturbation center of action is spread across the entire tropical Pacific in the form of a dipole.
For the coupled models that include deep atmospheric convection, the optimal perturbation center of action
is primarily confined to the western Pacific warm pool. In addition, the degree of linear dependence of the
eigenmodes on the remaining members of the eigenmode spectrum is controlled by the atmospheric model
dynamics. These findings are in general agreement with the results obtained from intermediate coupled
models. In particular, the atmospheric models used here have also been used in intermediate coupled models
that have been employed extensively in previous studies of the optimal perturbations of El Niño Southern
Oscillation. Thus a direct comparison between those intermediate models and the hybrid models used here
can be made.

1 Introduction

The need to improve probabilistic forecasts of ENSO has led to a flurry of interest in the optimal perturbations
and optimal forcing patterns of the coupled ocean-atmosphere system. The optimal perturbations of a variety
of coupled models of ENSO of varying complexity have been discussed in the literature, although there is
considerable disagreement between them for a given perturbation growth norm. Some models suggest a pro-
nounced ENSO-like response resulting from perturbations in the eastern tropical Pacific (Blumenthal, 1991;
Xue et al., 1994, 1997ab; Chenet al., 1997; Thompson 1998; Fanet al., 2000), while other models yield the
same response resulting from perturbations in the west Pacific (Moore and Kleeman, 1996, 1997ab; Eckert,
1999). The latter support the popular idea that intraseasonal variability in the tropical atmosphere may act to
enhance or even trigger ENSO episodes (Lau and Chan, 1985, 1986, 1988; McPhaden, 1999). However, the
optimal perturbation structure can depend critically on the physics employed in a model and on the number of
model degrees of freedom (Moore and Kleeman, 2001).

Most previous studies of optimal perturbations have focussed on models of intermediate complexity, and as
such, are often criticized for their simplicity. In this paper we attempt to address this latter issue by extending
the ideas and findings of earlier studies to more complex coupled models in which one component is an Ocean
General Circulation Model (OGCM). We will demonstrate that the optimal perturbation structures of hybrid
coupled models are significantly influenced by atmospheric physics.

Our paper is laid out as follows. In section 2 we describe a hierarchy of coupled models that are used in the
present study. In section 3 we examine the structure of the most unstable coupled ocean-atmosphere eigenmodes
of each member of the model hierarchy, and explore the impact of atmospheric physics on the non-normality
of the system. The optimal perturbations of each coupled model are examined in section 4 using various
perturbation growth norms. We end with a discussion of our results and conclusions in section 5. An appendix
introduces some important ideas relating to optimal perturbations using a simple illustrative example that will
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be helpful for readers not familiar with the literature.

2 A Hierarchy of Coupled Models

Of interest in this study are the optimal perturbations of the primary modes of coupled ocean-atmosphere
variability on seasonal-to-interannual timescales, both as potential triggers for low-frequency variability, such
as ENSO episodes, and for generating ensemble forecasts. It could be argued that the most complete picture of
these perturbations can only be obtained from Coupled ocean-atmosphere GCMs (CGCMs). While this may
be true, the practicalities of computing the optimal perturbations using a CGCM are prohibitive because of
the disparity in timescales between atmospheric instabilities, ocean instabilities, and low-frequency coupled
ocean-atmosphere modes. To isolate the optimal perturbations of the low frequency coupled modes we have
used simplified atmospheric models that describe only the low-frequency dynamics thought to be important for
ENSO. These models do not support jets and fronts that yield very rapid perturbation growth at mid and upper
levels of the troposphere on fast timescales (Molteni and Palmer, 1993; Buizza and Palmer, 1995; Hartmann
et al., 1995). Similar features in the ocean can also support optimal perturbation growth (Farrell and Moore,
1992; Moore and Farrell, 1993; Moore and Mariano, 1999), but a judicious choice of error growth norm can be
used to focus attention on the lower frequency coupled modes of variability.

In this work we have used a hierarchy of three hybrid coupled models of ENSO. The hierarchical structure
is determined by the complexity of the different atmospheric models used since the same OGCM is common
to each coupled model. Our choice of models in the hierarchy was motivated by Moore and Kleeman (2001)
who showed that atmospheric model physics have a significant impact on optimal perturbation structure in
intermediate coupled models. The atmospheric models used in this study all emphasize a different aspect of air-
sea interaction in the tropics. It is the impact of these different physical processes on the optimal perturbations
that we have explored. Since all of the component models of our coupled model hierarchy are described
elsewhere in detail, only a short description of each model is given here.

2.1 The Ocean Model

The ocean component common to each coupled model in the hierarchy is OPA 8.1, a primitive equation OGCM
developed by Madecet al (1998). The version of the model used here is configured for the tropical Pacific
Ocean between 120◦E-75◦W and 30◦N-30◦S, and is described in detail by Vialard and Delecluse (1998ab) and
Vialard et al. (2001). The model horizontal resolution is 1◦ zonal, and increases in the meridional direction
from 0.5◦ between 5◦N-5◦S to 2◦ at 30◦N and 30◦S. There are 25 levels in the vertical with 10 m thickness in
the upper 150 m, and realistic bathymetry and coastal geometry are included.

Prior to coupling with each atmospheric model, the OGCM was first spun-up by forcing it with climatological
monthly mean observed FSU winds for 30 years. The model was also forced by a surface heat fluxQ =
Qh + ε(T −Tr) whereQh is the climatological seasonal cycle of surface heat flux derived from the ECMWF
ReAnalysis (ERA),T is the model SST,Tr is the climatological mean observed seasonal cycle of SST from
Reynolds and Smith (1994), andε = −40 W m−2 K−1 is a relaxation constant. A similar annual mean net
freshwater flux forcing was used, composed of ERA net(E−P) and a relaxation to the annual mean sea
surface salinity of Levitus (1982). At the end of year 30 there are no significant long term trends in the upper
ocean circulation within the 20◦N-20◦S band. Following this, the OGCM was then run for a further 40 years
using the actual observed monthly mean FSU wind stress to force the model for the period 1960-1999. During
this time, the observed climatological seasonal cycles of SST, surface heat flux and net surface freshwater flux
derived from ERA, and annual mean Levitus surface salinity were also used to force the model.
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2.2 Coupled Model 1

The first member of the coupled model hierarchy, referred to as Model 1, consists of the OGCM coupled to a
statistical model of the atmosphere. The latter was constructed from a SVD analysis (Brethertonet al., 1992) of
the monthly mean SST anomalies of the OGCM and the monthly mean FSU wind stresses anomalies from the
last 40 years of the OGCM spin-up described in section 2.1. Similar statistical atmospheric models have been
used by others as reported in the literature (eg Latif and Villwock, 1990; Latif and Flügel, 1991; Balmasedaet
al., 1994; Syuet al., 1995; Maciaset al., 1996; Kleemanet al., 1999).

In Model 1 the OGCM was forced with a linear combination of the FSU monthly-mean climatological winds
and the wind anomalies computed from the statistical atmospheric model in response to OGCM SST anomalies
as illustrated schematically in Fig. 1a. The OGCM SST anomalies were computed relative to the 1967-1999
seasonal cycle of the OGCM spin-up experiment described in section 2.1.

2.3 Coupled Model 2

The second coupled model, referred to as Model 2, consists of the OGCM coupled to a 2-level dynamical model
of the atmosphere. The atmospheric model is a steady state version of Kleeman (1989) in which the atmosphere
is always assumed to be in steady state with the ocean SST (Kleeman, 1991), an excellent approximation in the
tropics (Webster, 1972; Gill, 1980). The Kleeman atmospheric model is a global anomaly model, and computes
the wind anomalies about the observed seasonal cycle which is specified from observations. The atmosphere
is heated in two ways: (i) by Newtonian cooling/relaxation to the SST anomaly, which mimics the effects of
sensible heat exchange, surface radiation and shallow convection, processes that are not explicitly represented
in the model; and (ii) by latent heating due to deep penetrative convection via a simple moist static energy
dependent convection scheme.

In Model 2, OGCM SST anomalies were computed as in Model 1 and passed to the atmospheric model as
illustrated schematically in Fig. 1b. In response to these SST anomalies, the atmospheric model generates
wind anomalies, and the OGCM is forced with a linear combination of theses wind anomalies and the FSU
monthly-mean climatological winds.

2.4 Coupled Model 3

The third member of the coupled model hierarchy, referred to as Model 3, consists of the OGCM coupled to the
Kleeman atmospheric model via a model of the Atmospheric Boundary Layer (ABL) developed by Kleeman
and Power (1995) (Fig. 1c). The ABL is a global anomaly model, and the potential temperature anomaly
equation includes the effects of advection by the mean atmospheric circulation, turbulent heat transfer at the
surface, and dissipation. The mean atmospheric circulation is prescribed from climatological observations, and
the surface heat flux is computed using the normal bulk formula with stability dependent transfer coefficients.
Complete details of the ABL are beyond the scope of this paper, and the reader is encouraged to consult
Kleeman and Power (1995) who present a detailed description of the model and its performance.

In Model 3, the OGCM SST anomalies were computed as in Models 1 and 2. The resulting ABL temperature
anomalies were computed relative to an ABL model seasonal cycle obtained by running the ABL for 30 years
using observed monthly mean climatological surface temperatures. In Model 3, the net turbulent heat flux
anomaly from the ABL was added to the climatological ERA fluxes described in section 2.1 and used to force
the OGCM. The ABL temperature and specific humidity anomalies were used in the latent heat calculations
for deep convection in the Kleeman atmospheric model. The wind stresses used to force the OGCM were
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a Model 1

Statistical Atmos.
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b Model 2

Dynamical Atmos.
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Q

Figure 1: A schematic of each hybrid coupled model:τ is the surface wind stress anomaly,Θ is the ABL
potential air temperature, andQ is the anomalous surface heat flux.
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computed as in Model 2.

2.5 Coupled Model Performance

The efficacy of each coupled model was examined in terms of their ability to simulate variability on ENSO
timescales by performing a series of hindcast experiments for the period 1980-1999, using the wind forced
OGCM integration of section 2.1 as a surrogate for the truth. We use the OGCM solution in this way rather
than the actual observed state of the coupled system because a data assimilation scheme was not available to
properly initialize each model. Generally, it was found that each coupled model outperforms persistence, and
exhibits a hindcast skill for SST that is comparable to several other models that are currently used for ENSO
prediction.

3 Eigenmodes and Non-Normality

3.1 Eigenmode Structure

In sequel we will represent each coupled model symbolically as:

∂S
∂t

= N(S) (1)

whereS represents the state-vector of the coupled system (i.e. the vector of model prognostic variables), andN
collectively represents the operators that govern the time evolution ofS, some of which are non-linear.

We are interested in the evolution of small perturbationss that are described by the tangent linear form of
(1), namely∂s/∂t = As whereA = ∂N(S)/∂S|S0, S0 being a solution of (1) that is of particular interest.S0

may be the actual time varying solution of (1), or it may be taken to represent the time mean trajectory. The
latter is not strictly a solution of (1), but such approximations have been discussed and used extensively in the
meteorological literature (eg Simmons and Hoskins, 1976; Frederiksen, 1982). In the present study, we will
adopt this latter approach and concern ourselves with the case whereS0 does not vary in time. In this case the
tangent linear equation is autonomous.

The vectorS0 will be referred to as the “basic state” and will represent the model annual mean conditions of
the coupled system which were computed as the annual average of each model component forced separately
with climatological observed boundary conditions. The ocean basic state is therefore identical in all models,
and the SST and a vertical section of temperature along the equator are shown in Fig. 2 for future reference.
A time independent basic state was used for two reasons: (i) to eliminate the influence that differences in the
basic state of each coupled model, and its time evolution, may have on their eigenmode structures, and (ii) to
simplify the analysis and dynamical interpretation of the resulting autonomous system. The eigenmodes and
optimal perturbations of time-evolving basic states will be the subject of a future study.

For a time independent basic state, the eigenmodes are uniquely defined for all times, and as shown in the
appendix, their properties are of interest. The eigenmodes ofA were computed iteratively using the tangent
linear version of each coupled model and the ARPACK library of Lehoucqet al. (1997). Details of the tangent
linear components of each model are given in Weaveret al. (2001) and Moore and Kleeman (1996), and the
computational procedures are described in Appendix B of Mooreet al. (2001).
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Figure 2: (a) The ocean basic state SST, and (b) a vertical section of the upper ocean temperature used for the
eigenmode and optimal perturbation calculations. The contour interval is 2◦.
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The most unstable eigenmode of each coupled model takes the form of a low-frequency coupled ocean-
atmosphere oscillation with a period and exponential growth rate that depends on the strength of the coupling
between the atmosphere and ocean. In each coupled model the wind stress anomalies (and heat flux anomalies
in Model 3) used to force the OGCM were multiplied by a factorγ, referred to as the “coupling strength.”

Model 1 Model 2
γ Period e-folding |ν| µ e2στ Period e-folding |ν| µ e2στ

(yrs) time (yrs) (yrs) time (yrs)
0.5 14
0.8 3.6 0.7 24 127 4.6

0.825 6.0 50 78 124 1.0
0.85 6.3 8.3 83 1.1
0.9 7.3 3.1 83 1.4
0.93 8.4 2.3 83 1.5
1.0 ∞ 0.3 14 618 28.0 23.8 1.4 111 366 2 .0

Table 1: A summary of the characteristics of the most unstable eigenmodes and optimal perturbations of Model
1 and Model 2 for various values of the coupling strengthγ. For each model the following are given: the
eigenmode period and e-folding growth time in years; the value of|ν| defined in section 3.2 using theT norm;
the growth factorµ of the fastest growing optimal perturbation for theT norm for an optimal growth time of
τ = 6 months; and the energy growth factore2στ of a perturbation with structure of the most unstable eigenmode,
whereσ is the eigenmode growth rate. Blank entries indicate values that were not computed.

Table 1 shows how the period and e-folding time of the most unstable eigenmode of Models 1 and 2 vary withγ,
and indicates that the period (e-folding time) increases (decreases) with increasingγ. No eigenmode solutions
could be found using ARPACK for any of the models for values ofγ below the primary bifurcation point. For
Model 2 this occurs aroundγ = 0.8. Model 3 exhibits qualitatively similar behaviour to Models 1 and 2, and
all models generally agree with the behaviour of the coupled ocean-atmosphere modes discussed by Jin and
Neelin (1993ab) and Neelin and Jin (1993). The following values ofγ were used in all remaining calculations:
Model 1, γ = 0.8; Model 2,γ = 0.825; Model 3,γ = 1.0. These values ofγ yield unstable eigenmodes with
similar oscillation frequencies in each model, and as close as we could find to the observed frequency range of
ENSO. The eigenmode of Model 2 is the lowest frequency mode that could be identified in the present study.

The real and imaginary components of SST for the most unstable eigenmode of each coupled model are shown
in Fig. 3. These fields represent the SST structure of the eigenmodes separated by one quarter of a period. The
associated period and exponential growth rate of each eigenmode is indicated, and the basic state SST is shown
in Figs. 2a for reference. The SST structure of the Model 3 eigenmode is very similar to that of Model 2 and
is not shown. Instead, the ABL potential temperature anomalyθ of the Model 3 eigenmode is shown in Figure
3ef. For each model, the ocean temperature structure of each eigenmode has a significant amplitude only down
to the depth of the thermocline (not shown).

The eigenmode of Model 1 (Fig. 3ab) takes the form of an oscillation with a period of 3.61 years. The
eigenmode is “ENSO-like” in SST and takes the form of a standing wave in the east Pacific which is more
clearly illustrated in Figs. 4ab which shows a Hovmoller diagram of SST and zonal wind stress anomalies
averaged between 2◦N and 2◦S.

The eigenmode of Model 2 (Fig. 3cd) takes the form of an oscillation with a period of 6 years with a pre-
dominantly dipole structure in SST along the equator. The west Pacific node of the dipole over the warm pool
is associated with deep convection in the Kleeman atmospheric model. This eigenmode takes the form of a
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Period= 3.61 yrs,  Growth Rate= 1.52 yrs-1
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Figure 3: The real and imaginary components of SST for the most unstable eigenmode of (a,b) Model 1,
and (c,d) Model 2. The ABL temperature anomaly of Model 3 is shown in (e,f) for the entire ABL model
domain. The period and growth rate of the eigenmode is also indicated. Shaded and unshaded regions indicate
perturbations of the opposite sign. The contour interval is arbitrary.
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Figure 4: Hovmoller diagrams of SST and zonal wind stressτx averaged between 2◦N and 2◦S for the most
unstable eigenmode of (a,b) Model 1, (c,d) Model 2, and (e,f) Model 3. Shaded and unshaded regions indicate
perturbations of opposite sign. The contour interval is arbitrary. In each case the exponential growth of the
eigenmodes has been suppressed.
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standing wave as shown in Fig. 4cd.

The ABL temperature fields for the Model 3 eigenmode are shown in Fig. 3ef, and reflect the SST anomalies.
The eigenmode of Model 3 takes the form of an oscillation with a period of 3.7 years as shown in Figs. 4ef.

The SST structure of the Model 1 eigenmode is qualitatively similar to the first EOF of the observed SST (see
Fig. 8 of Palmer and Anderson, 1994), while the SST structures of the eigenmodes of Models 2 and 3 are
reminiscent of the 2nd EOF. Thus each coupled model captures some aspects of the observed modes of SST
variability, and describes a subset of the atmospheric dynamics thought to be important for air-sea interaction
in the tropical Pacific on seasonal to interannual timescales. The perturbation dynamics of each model may
therefore provide valuable information about the potential influence of each atmospheric process on the non-
normality of the coupled system, and the potential impact on perturbation growth in nature and in complex
CGCMs.

3.2 Adjoint Eigenmode Structure

As discussed in the appendix, the structure and properties of optimal perturbations depend on the degree of
linear dependence of the eigenmodes ofA (Farrell, 1982, 1984, 1985, 1988ab, 1989ab). IfA is normal, its
eigenmodes are orthogonal and the optimal perturbations coincide with the eigenmodes. On the otherhand,
if A is non-normal, which is usually the case, the eigenmodes are linearly dependent. The degree of linear
dependence is one factor that determines the structure and growth of the resulting optimal perturbations (Farrell
and Ioannou, 1996).

We will denote the most unstable eigenmode of each coupled model ase, and the corresponding adjoint eigen-
mode asb. The adjoint operator and adjoint eigenmodes are by definition norm dependent (Courant and
Hilbert, 1953). To see this, suppose we denote by〈v,u〉 the inner-productvTXu whereX is a symmetric
positive definite matrix. The adjoint ofA with respect to this inner-product is found by noting thatX = XT and
〈v,Au〉 = vTXAu = uTATXTv = uTX(X−1ATX)v = 〈u,(X−1ATX)v〉. Thus the adjoint ofA with respect to
the chosen norm isX−1ATX. The adjoint ofA with respect to the L2-norm (X = I ) is thereforeAT . If b is an
eigenvector ofAT , thenX−1b is an eigenvector of the adjointX−1ATX. In sequel the adjoint eigenmodesb are
the eigenvectors of the adjoint operator relative to the L2-norm. In this regard, the adjoint eigenmodes are also
of interest because they represent the optimal excitation of the corresponding eigenmodes ofA which yield the
most rapid growth of the normvTXu.

A useful quantitative measure of the degree of linear dependence ofe on the remaining eigenmodes ofA is
given byν = |Gb||GTe|/(bTGGTe) (Farrell and Ioannou, 1999), whereX = GGT , andG = I for the L2-norm
(see appendix). Sinceeandb are complex vectors,ν will also in general be complex so we consider|ν|.

The most unstable adjoint eigenmodesb of each coupled model were computed using the adjoint versions of
each tangent linear coupled model (Weaveret al., 2001; Moore and Kleeman, 1996). The SST structure of the
most unstable adjoint eigenmodes for each coupled model are shown in Fig. 5.

For Model 1, the adjoint eigenmode takes the form of a dipole spanning the entire equatorial Pacific (Figs. 5ab).
A Hovmoller diagram of the equatorial adjoint eigenmode SST is shown in Fig. 6a confirming that the period
is identical to that of the corresponding eigenmode (cf Fig. 4a). The values of|ν| for the Model 1 eigenmode
for two norms relevant to later sections of the paper are shown in Table 2.

In the case of Model 2, Figs. 5cd show that the adjoint eigenmode is confined mainly to the west Pacific
warm pool. Figure 6b shows a Hovmoller plot of the adjoint eigenmode equatorial SST. The values of|ν|
for the eigenmode of Model 2 are shown in Table 2, and a comparison with those of Model 1 reveals that the
most unstable eigenmode of Model 2 is more non-normal than that of Model 1. This is in agreement with
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Figure 5: The real and imaginary components of SST of the most unstable adjoint eigenmode for (a,b) Model
1, (c,d) Model 2, and (e,f) Model 3. Shaded and unshaded regions indicate perturbations of opposite sign. The
contour interval is arbitrary.
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Figure 6: Hovmoller diagrams of SST averaged between 2◦N and 2◦S for the most unstable adjoint eigenmode
of (a) Model 1, (b) Model 2, and (c) Model 3. (d) A Hovmoller diagram of ABLθ averaged between 2◦N and
2◦S for the most unstable adjoint eigenmode of Model 3 for the entire longitudinal domain of the ABL. Shaded
and unshaded regions indicate perturbations of opposite sign. The contour interval is arbitrary. In each case the
exponential growth of the eigenmodes has been suppressed.
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Model 1 Model 2 Model 3

L2-Norm 211 450 479
T -Norm 24 78 83

Table 2: The values of|ν| whereν = |Gb||GTe|/(bTGGTe) wheree denotes the most unstable oscillatory
eigenmode andb is the corresponding adjoint eigenmode. Values of|ν| are shown for the most unstable
oscillatory eigenmodes of each coupled model using two different norms defined byG. Please see the main
text for the appropriate definitions ofG in each case.

the findings of Moore and Kleeman (2001) who showed that the deep convection over the warm pool in the
Kleeman atmospheric model can significantly increase the non-normality of the system.

For Model 3, Figs. 5ef and Fig. 6c show that the adjoint eigenmode is similar to that of Model 2. A Hovmoller
diagram of the adjoint ABLθ is shown in Fig. 6d, and reveals that SST andθ are 180◦ out of phase over the
warm pool. The values of|ν| for the most unstable eigenmode of Model 3 are shown in Table 2 which reveals
that of all three models, Model 3 is the most non-normal. We will comment further on the structure of the
adjoint eigenmodes in section 4 when we present the optimal perturbations.

The general structure of the most unstable eigenmodes and adjoint eigenmodes of each model are insensitive
to variations in the coupling strengthγ. On the otherhand the values of|ν| for these eigenmodes do exhibit a
sensitivity toγ as shown in Table 1. For Model 1|ν| decreases asγ increases, while for Model 2|ν| generally
increases withγ.

4 Optimal Perturbations of the Annual Mean State

The optimal perturbations of each coupled model with respect to the normN = sTGGTsare, by definition, the
right singular vectors ofGTR(τ) whereR(τ) is the propagator of the tangent linear equation (see appendix),τ
is the optimal growth time, andG defines the norm used to measure perturbation growth. The squares of the
corresponding singular values represent the growth factorµ of N for the optimal perturbations over the time
intervalτ. The growth factorµ can be written as:

µ= sT(0)RT(τ)GGTR(τ)s(0)/sT(0)GGTs(0) (2)

and equation (2) verifies that the optimal perturbations are the eigenvectors ofRT(τ)GGTR(τ). In general, the
norms used at initial and final time can be different as is often the case in numerical weather prediction where
the analysis error covariance is used to defineG at initial time (Fanet al., 2000; Barkmeijeret al., 1998). As in
section 3 we will confine our attention to autonomous systems where (1) was linearized about an annual mean
state of each model, recalling that the ocean basic state is identical for all three models. As noted in section
3, this assumption greatly simplifies the analysis and interpretation of the optimal perturbations. For Models 1
and 2, the state vectors= (T,S,u,v)T whereT andSare the temperature and salinity perturbations, and(u,v)
are the ocean current perturbations. For Model 3,s= (T,S,u,v,θ)T whereθ is the boundary layer perturbation
potential temperature.
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The singular vectors with respect to two different norms will be considered. The first norm is relevant to the
problem of error growth in ENSO forecast models, while the second is of general dynamical interest.

4.1 A Temperature Norm

The first norm considered as a measure of perturbation growth is the basin-integrated squared temperature
perturbation denotedT and defined as:

T =
∫ 0

−H(λ,ϕ)

∫ λe

λw

∫ ϕn

ϕs

T2acosϕdλdϕdz (3)

whereH(λ,ϕ) is the spatially varying depth of the ocean,λw ≡ λw(ϕ) andλe≡ λe(ϕ) define the longitude of
the western and eastern boundaries respectively,ϕs andϕn are the northern and southern latitudes of the model
domain, anda is the Earth radius. This norm is representative of the type of norm that would be of interest for
ENSO prediction, and in this example would represent the temperature errors of a model forecast. The depth,
latitude and longitude ranges in (3) may be tailored for specific needs, but we consider the entire ocean domain.
ForT , all elements ofG in (2) are zero except the firstNo diagonal elements, whereNo is the number of ocean
temperature grid points. At initial timeS= u = v = θ = 0 at all latitudes, longitudes and depths, andτ = 6
months.

TheT growth factors of the first 10 members of the optimal perturbation spectrum of each coupled model are
shown in Fig. 7. In each case, the spectrum is dominated by the first member, which is in agreement with the
optimal perturbation spectra of intermediate coupled models cited in section 1. For comparison, the optimal
perturbation spectrum of the OGCM alone (γ = 0) using the same basic state is also shown in Fig. 7, and in
contrast to the coupled models, is very flat. The initial and final SST structures of the fastest growing optimal
perturbation of each coupled model are shown in Fig. 8.

For Model 1, Fig. 8a shows that the fastest growing optimal perturbation (hereafter referred to as OP1) has an
initial SST structure in the form of a dipole spanning the entire basin. The amplitude of the initial temperature
perturbation is significant only down to the depth of the thermocline, as shown in Fig. 9a. The westward
extension of the subsurface temperature perturbation along the thermocline evident in Fig. 9a is consistent with
the recent adjoint sensitivity experiments of Galantiet al. (2001) using a similar hybrid coupled model.

The initial SST structure of OP1 is remarkably similar to the real phase of the most unstable adjoint eigenmode
of Model 1 shown in Fig. 5a. Figure 8b shows that OP1 evolves into an ENSO-like episode, which has a
structure similar to the real phase of the most unstable eigenmode of Model 1 (cf Fig. 3a). Thus OP1 is optimal
for exciting the most unstable coupled ocean-atmosphere eigenmode of the system. The similarity between
OP1 and the adjoint eigenmode was anticipated because, as noted in section 3.2, the adjoint eigenmode is the
optimal excitation for the corresponding eigenmode, and at the same time maximises the growth of the norm
associated with the inner-product that defines the adjoint operator. In this case the adjoint operator was defined
with respect to the L2-norm, and theT -norm is a subset of the L2-norm. The growth factor ofT for OP1 is
127. However, a perturbation with the structure of the most unstable eigenmode would grow by a factor ofe2στ,
whereσ is the real part of its eigenvalue. According to Table 1, a perturbation with this structure would grow
in Model 1 by only a factor of 4.6 over a 6 month period. Thus the growth of OP1 over and above that expected
for the most unstable eigenmode must be due to the interference of the non-normal eigenmodes of the system.

Figures 8cd show that the SST structure of OP1 for Model 2 is confined primarily to the west Pacific warm
pool. As in Model 1 the amplitude of OP1 is significant only above the thermocline (Figs. 9cd), and OP1
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Figure 7: The growth factorµ of theT norm for the first 10 members of the optimal perturbation spectrum of
each coupled model and the OGCM (γ = 0) for τ = 6 months. The left ordinate is for Models 1 and 2 and the
OGCM, and the right ordinate is for Model 3.
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Figure 8: The SST structure of the fastest growing optimal perturbations of (a,b) Model 1, and (c,d) Model 2
using theT norm forτ = 6 months. The contour interval is arbitrary, and the growth factorµ of T is indicated.
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Figure 9: Vertical sections of ocean temperture along the equator at initial and final time are shown in (a,b)
for Model 1, and (c,d) for Model 2. Shaded and unshaded regions indicate perturbations of opposite sign. The
contour interval is arbitrary.
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bears a remarkable resemblance to the real phase of the most unstable adjoint eigenmode of Model 2 shown
in Fig. 5c. Figure 8d reveals that the Model 2 OP1 evolves into a perturbation that is strikingly similar to the
real phase of the most unstable eigenmode (cf Fig. 3c). Thus OP1 of Model 2 is also optimal for exciting
the most unstable coupled ocean-atmosphere eigenmode. The growth factor ofT for OP1 is 124, but from
Table 1, a perturbation with the structure of the most unstable eigenmode would grow by only a factor of 1.02
over a 6 month period. The growth of OP1 over and above that for the most unstable eigenmode is due to the
interference of the non-orthogonal eigenmodes of Model 2.

The SST structure of OP1 for Model 3 is very similar to that of Model 2 and is not shown. However, the growth
factor ofT for OP1 in Model 3 is 9286, some 74 times larger than that of Models 1 and 2. A perturbation with
the structure of the most unstable eigenmode would grow by only a factor of 2.9. Thus the greatly increased
growth factor of the Model 3 OP1 is due to the higher degree of non-normality of the most unstable eigenmode
compared to the corresponding eigenmodes of Models 1 and 2 (see Table 2).

The same OP growth factor can be obtained for a range of eigenvalues and values ofν as shown in the ap-
pendix. Table 1 shows evidence for this in Models 1 and 2 which have similar OP growth factors forT despite
differences inγ and the period, growth rate and|ν| for their most unstable eigenmodes. Table 1 also reveals
that a different choice ofγ = 1 yields very disparate OP growth factors forT with that of Model 1 being larger
despite the fact that the Model 2 eigenmode is more non-normal than the Model 1 eigenmode. We also note
that like the example in the appendix, OP growth is also possible when there are no growing eigenmodes. Table
1 reveals that OP1 of Model 2 still grows whenγ = 0.5 which Table 1 suggests is well below the primary
bifurcation point for this model.

For Model 3, an additional temperature-based norm was considered:

T ′ = T +h0

∫ 2π

0

∫ ϕn

ϕs

θ2acosϕdλdϕ (4)

which representsT plus the domain-integrated squared ABL perturbation temperature, andh0 is the boundary
layer thickness. As beforeS= u = v = 0 for the ocean at initial time, but nowθ 6= 0. The fastest growing
optimal perturbation of Model 3 for theT ′ norm is shown in Fig. 10 and is virtually identical to that for
theT −norm. The growth factor ofT ′, however, is larger than that ofT for the same optimal growth time,
and is achieved by initial temperature differences between the sea surface and ABL. Figure 10 shows that at
initial time, perturbations in SST andθ are of opposite sign in the western Pacific, which enhances the air-sea
heat exchange. This behavior is consistent with the 180◦ phase difference between the SST andθ anomalies
of the most unstable adjoint eigenmode in Figs. 6cd. An intermediate coupled model composed of the same
atmosphere as Model 3 but with a simplified ocean (Kleeman, 1993) shows qualitatively similar behaviour (not
shown) confirming the controlling influence that the ABL dynamics have on the optimal perturbation structure.

4.2 Dynamics ofT Optimals

The time evolution ofT is given by:

T (t) = T (0) − 2
∫ t

0

∫
V

uT
acosϕ

∂T
∂λ

dVdt︸ ︷︷ ︸
A

−2
∫ t

0

∫
V

vT
a

∂T
∂ϕ

dVdt︸ ︷︷ ︸
B

−2
∫ t

0

∫
V

wT
∂T
∂z

dVdt︸ ︷︷ ︸
C
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Figure 10: The fastest growing optimal perturbation of Model 3 using theT ′ norm andτ = 6 months. The initial
and final perturbation SST are shown in (a) and (b), and the initial and final ABL perturbationθ are shown in
(c) and (d). The growth factorµ of T ′ is indicated. Shaded and unshaded regions indicate perturbations of
opposite sign. The contour interval and is arbitrary.
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+ 2
∫ t

0

∫
V

T
a2

(
1

cos2 ϕ
∂

∂λ

(
AH

∂T
∂λ

)
+

∂
∂ϕ

(
AH

∂T
∂ϕ

))
+

∂
∂z

(
AvT

∂T
∂z

)
dVdt︸ ︷︷ ︸

D

(5)

whereU =U i +V j +Wk andT represent the basic state ocean velocity and temperature field components ofS0

in (1); u = ui +vj +wk andT are the perturbation ocean velocity and temperature components ofs; AH andAv

are the horizontal and vertical coefficients of eddy diffusivity; anddV = acosϕdλdϕdz is a volume element.
Terms A, B and C represent the contribution toT of perturbation horizontal and vertical heat fluxes, while
term D represents dissipation processes and surface sources and sinks. The amplitude of each perturbation was
normalised so thatT (0) = 1.

The time history of each term in (5) for OP1 of Model 1 is shown in Figure 11a, and provides a direct measure
of the contribution of each term in (5) to the growth factorµ of T . Figure 11a indicates that all terms in (5)
contribute significantly to the growth of OP1 in Model 1, although further analysis reveals that point-by-point
the integrand of terms B and C almost balance. Thus the major contributor to the growth ofT is term A
which represents the influence of perturbation zonal heat fluxes onT . Figure 11b shows a vertical section of
F = − uT

acosϕ ∂T/∂λ− vT
a ∂T/∂ϕ−wT∂T/∂z along the equator at time 3 months, and indicates largest growth

for Model 1 occurs primarily above and within the thermocline in the eastern Pacific. It is in the eastern Pacific
that the model response to OP1 is largest as shown in Figs. 8b and 9b. The SST perturbations that develop in the
east produce wind stress anomalies are like those shown in Fig. 4b as the most unstable eigenmode emerges.
These wind stress anomalies drive changes in the zonal velocity and Ekman transport in the upper ocean. The
associated changes in Ekman-inducedw are primarily balanced by changes inv, while changes inu yield rapid
growth ofT in the thermocline since 1

acosϕ ∂T/∂λ is relatively large in the east Pacific.

The contribution of each term in (5) to the growth of OP1 for Model 2 is shown in Figure 11c. In this case term
C accounts for all of the growth ofT for the optimal perturbation. A vertical section ofF along the equator is
shown in Fig. 11d and is largest in the upper thermocline of the west Pacific. As the most unstable eigenmode
emerges, the corresponding wind stress perturbations (Fig. 4d) drive perturbation Ekman-inducedw. These are
largest in the west Pacific in the upper thermocline where∂T/∂z is relatively large also.

The picture for the fastest growing optimal perturbation of Model 3 for theT norm is qualitatively very similar
to that for Model 2 (not shown). Instead we consider the growth of the optimal perturbation of Model 3 for
theT ′ norm. The contribution of the ABL toT ′ is derived from the tangent linear form of the equation for
boundary layer potential temperature (equation (6) of Kleeman and Power (1995)). Contributions toT ′ from
the ABL arise from surface heat exchange between the ocean and ABL (denoted SHE), advection through the
top of the ABL (denoted VADV), and dissipative processes (denoted DISS). The time history of SHE, VADV,
DISS and each term in (5) is shown in Fig. 11ef for OP1 of theT ′ norm of Model 3. As in the preceding
cases, a significant component of the growth ofT ′ is due to term C in (5), but now is augmented by the surface
exchange of heat between the ABL and ocean. The growth of SHE is largely offset by DISS.

4.3 The Energy Norm

The second norm considered was the basin-integrated ocean perturbation energy denotedE given by:

E =
ρo

2

∫ 0

−H(λ,ϕ)

∫ λe

λw

∫ ϕn

ϕs

(u2 +v2 +(gρ/ρoN)2)acosϕdλdϕdz (6)

whereρ is the perturbation density,N(λ,ϕ,z) is the Brunt-V̈ais̈alä frequency of the basic stateS0, andg is the
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Figure 11: Timeseries of Term A, Term B, Term C, and Term D in equation (5) for the fastest growing optimal
perturbation of (a) Model 1, and (c) Model 2 using theT norm for τ = 6 months. A vertical section of
− uT

acosϕ ∂T/∂λ− vT
a ∂T/∂ϕ−wT∂T/∂z along the equator at 3 months is shown in (b) for Model 1, and (d)

for Model 2. Dark (light) shading indicates areas of heating (cooling). The contours denote the basic state
temperatureT with a 2◦C contour interval. The bold contour is the 20◦C isotherm. Timeseries of SHE, VADV,
DISS and each term in equation (5) for the fastest optimal perturbation of Model 3 using theT ′ norm forτ = 6
months are shown in (e) and (f).
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acceleration due to gravity. For simplicity, the linear equation of stateρ = ρo(αT +βS) was used to derive (6)
whereα =−2.489×10−4 kg m−3 K−1 andβ = 7.453×10−4 kg m−3 psu−1 are the expansion coefficients for
temperature and salinity respectively, andρo = 1020 kg m−3. This norm is of obvious interest since it indicates
how perturbation energy can be exchanged with the basic state flow via barotropic and baroclinic processes. In
Model 3,θ = 0 at initial time sinceθ does not contribute toE. ForE the matrixX of section 3.2 is singular and
cannot be factorized. However, this problem may be circumvented ifS= 0 at initial time.

The SST and upper ocean temperature along the equator of OP1 for Model 1 using theE norm is shown in
Figs. 12ab and 13ab. At the surface, the initial structure of OP1 for theE norm is confined to the far eastern
tropical Pacific (Fig. 12a) and follows the thermocline at depth (Fig. 13a). Like theT optimal, theE optimal
evolves into the most unstable eigenmode (cf Fig. 3b).

OP1 of Model 2 using theE norm is shown in Figs. 12cd and Figs. 13cd. A comparison of Fig. 12c with Fig.
8c reveals a number of similarities between the initial SST structures of theE andT optimals in the western
Pacific. Like theT optimal, theE optimal evolves into the most unstable eigenmode of Model 2 (see Fig. 3d).
Figure 13c reveals a subsurface dipole in the vertical in the far western Pacific centered around 75m depth .

The surface signature of the fastest growingE optimal of Model 3 is similar to that of theT optimal as shown
in Fig. 12e. The subsurface structure is similar to that of Model 2 (Fig. 13e) and like the other optimal
perturbations it evolves into the most unstable eigenmode. The growth factorµ = 15568, is some 50 times
larger than that of Models 1 and 2. We will comment further on these large growth factors in section 5.

Differences in the structure of the optimal perturbations of theT andE norms are to be expected based on
section 3.2. The adjoint eigenmodes described there are defined with respect to an inner-product that defines
the L2-norm of the coupled system. If an energy norm could be used to define the adjoint operator, one phase
of the adjoint eigenmodes of that operator would resemble the optimal perturbations of theE norm presented
here. However as noted above the use of such a norm to define the adjoint is problematic since the matrixX
discussed in section 3.2 is singular and cannot be factorized.

4.4 Dynamics ofE Optimals

The time evolution ofE is given by:

E(t) = E(0) − ρo

∫ t

0

∫
V

u
acosϕ

(
u

∂U
∂λ

+v
∂V
∂λ

)
+

v
a

(
u

∂U
∂ϕ

+v
∂V
∂ϕ

)
+w

(
u

∂U
∂z

+v
∂V
∂z

)
dVdt︸ ︷︷ ︸

A

− ρo

∫ t

0

∫
V

ρ

(
g

ρoN

)2[
u

acosϕ
∂ρ
∂λ

+
v
a

∂ρ
∂ϕ

]
dVdt︸ ︷︷ ︸

B

+ ρo

∫ t

0

∫
V
(u∇ · (AmH∇u)+v∇ · (AmH∇v))+

(
u

∂
∂z

(
AmV

∂u
∂z

)
+v

∂
∂z

(
AmV

∂v
∂z

))
︸ ︷︷ ︸

C1

+ ρ

(
g

ρoN

)2(
∇ · (AH∇ρ)+

∂
∂z

(
AV

∂ρ
∂z

))
dVdt︸ ︷︷ ︸

C2

(7)
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Figure 12: Same as Fig. 8 but for the fastest growing optimal perturbation of theE norm. (e) and (f) show
OP1 for Model 3.
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Figure 13: Same as Fig. 9 but for the fastest growing optimal perturbation of theE norm. (e) and (f) show OP1
for Model 3.
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whereAmH andAmV are the horizontal and vertical eddy viscosities respectively, andρ is the basic state density.
Terms A and B represent the release of perturbation energy from the basic state due to barotropic and baroclinic
processes respectively, and terms (C1+C2) collectively represent net sources and sinks at the surface due to
surface fluxes and dissipation. Each OP is normalized so thatE(0) = 1.

Figure 14 shows the time evolution of each term in (7) for OP1 of theE norm for Models 1 and 2. Model 3 is
very similar to Model 2, apart from the largerE growth factor, and is not shown. In all cases the growth ofE
is dominated by baroclinic processes as described by term B. A vertical section of the integrand of term B is
also shown in Fig. 14 after 3 months for each perturbation. In Model 1, Fig. 14b shows that the east Pacific is
favoured for the growth ofE where the equatorial undercurrent approaches the surface. To understand this, it
is useful to remember that the growth of perturbations by baroclinic processes is a form of thermal convection
(Pedlosky, 1979). For this to occur horizontal gradients of potential density are required. At middle latitudes
these gradients can be maintained by the Coriolis force as described by the thermal wind relation. At the equator
in the Pacific Ocean wheref = 0 the zonal density and pressure gradients are maintained by the easterly surface
trade winds. The region where the undercurrent rises to the surface in the east Pacific is also a region of large
horizontal temperature and density gradients (cf Fig. 2b) since the undercurrent itself is driven by the zonal
pressure gradient below the surface within the thermocline (Gill, 1982). Thus the necessary conditions for
baroclinic energy release are present in this region.

In Models 2 and 3 (Fig. 14d), the western Pacific is favoured for growth ofE in regions where the basic state
stratification is weak since it is here that thermal convection can occur most readily. In these regions 1/N

2
in

(7) will be very large. A comparison of Figs. 11bd and 14bd reveals that the geographic locations of maximum
growth ofT andE largely coincide, indicating that the same regions of the ocean are susceptible to non-normal
perturbation growth irrespective of the choice of perturbation growth norm.

5 Summary and Conclusions

We have explored the properties and dynamics of the optimal perturbations of a hierarchy of hybrid coupled
ocean-atmosphere models of the tropical Pacific. The coupled model hierarchy was constructed so as to yield
information about the dependence of optimal perturbation structure and growth rate on atmospheric dynamics
and air-sea interaction processes. Each hybrid coupled model shares the same OGCM while three different at-
mospheric models of varying complexity were employed. These same three atmospheric models have also been
coupled to a 112-layer ocean model, and the resulting intermediate coupled models employed in a series of stud-
ies by some of the authors to explore the optimal perturbations of ENSO (Moore and Kleeman, 1996; 1997ab).
The commonality of the atmospheric models employed in these two sets of models means that a direct com-
parison of the results is possible and meaningful. The optimal perturbation studies using the aforementioned
intermediate coupled models, and others cited in section 1, have revealed the following:

(1) The optimal perturbation spectrum is typically dominated by one member;

(2) The dominant optimal perturbation evolves into the gravest coupled ocean-atmosphere eigenmode of the
system;

(3) The optimal perturbations of coupled models that utilize statistical models of the atmosphere emphasize
the sensitivity of the central and east Pacific to perturbation growth;

(4) The optimal perturbations of coupled models that include a parameterization for deep atmospheric con-
vection emphasize the sensitivity of the west Pacific warm pool to perturbation growth;
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Figure 14: Timeseries of Term A, Term B, and Term C=C1+C2 in equation (7) for the fastest growing optimal
perturbation of (a) Model 1, and (c) Model 2 using theT norm for τ = 6 months. A vertical section of
ρo(g/ρoN)2ρ(u∂ρ/∂x+v∂ρ/∂y) along the equator at 3 months is shown in (b) for Model 1, and (d) for Model
2. Dark (light) shading indicates areas where potential energy is liberated from (given to) the basic state. In (b)
the contours are the basic state zonal velocityU with a 0.1 m s−1 contour interval. Westward flows are indicated
by dashed contours. In (d) the contours are the basic state Brunt-Väis̈alä frequencyN

2
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(5) The degree of non-normality of the gravest coupled ocean-atmosphere eigenmode is strongly controlled
by the atmospheric component of the coupled system;

(6) The structure of the optimal perturbations for models with a dynamical atmosphere are relatively insen-
sitive to the choice of perturbation growth norm.

The results of previous studies of the optimal perturbations for ENSO using intermediate coupled models are
therefore supported by the hybrid coupled models used here and appear to be robust. With regard to (6),
the optimal perturbations of Models 1 and 2 do show some sensitivity to the choice of norm. However, the
geographical location of maximum growth is the same for both norms considered.

In general, the growth factors of the optimal perturbations of the hybrid coupled models considered here are
higher than those found in intermediate coupled models. Further investigation has revealed that the hybrid
model growth factors are probably an over estimate of what may be achieved by the same perturbations in the
non-linear model. This is associated with the limitations of the tangent linear approximation in each coupled
model. The primary factor limiting the validity of the tangent linear assumption appears to be the turbulent
kinetic energy (TKE) vertical mixing scheme of Blanke and Delecluse (1993) employed in the OGCM. A sim-
plified version of this scheme was used by necessity in the tangent linear model and adjoint model following the
practice of numerical weather prediction (Mahfouf, 1999). Depending on perturbation amplitude and structure,
perturbations in the non-linear model may degenerate quickly into large amplitude, small scale disturbances
as the TKE mixing scheme attempts to remove vertical density gradients in the upper ocean where the stratifi-
cation is already weak (see Fig. 14d). This type of behaviour has important implications for the computation
of optimal perturbations that can be used for generating forecast ensembles, especially when considering the
optimal perturbations of time evolving basic states in areas where the TKE mixing is very active. In addition,
the presence of large local density or velocity gradients in the basic state can yield rapidly growing optimal
perturbations that violate the tangent linear assumption on seasonal timescales. In this paper these problems
were largely circumvented by considering the optimal perturbations of a time averaged circulation. However,
these important aspects of the system are currently under further investigation and will be the subject of a future
publication.

Nonetheless, allowing for limitations of the tangent linear assumption, the higher growth factors of the optimal
perturbations presented here are consistent with those of some intermediate coupled models. For example,
Moore and Kleeman (1997b) found that as the complexity of the ocean component of an intermediate model
was increased by adding perturbation horizontal and vertical advection, the growth factors of the optimal per-
turbations also increased.

In conclusion, the results of previous studies using intermediate coupled models, and the results of the present
study suggest that the structure of the optimal perturbations of low-frequency tropical coupled ocean-atmosphere
modes such as ENSO is influenced more by atmospheric dynamics and the details of the air-sea interactions
processes than by ocean dynamics. In addition, the hybrid coupled models used here suggest a number of po-
tentially important perturbation growth machanisms that may influence the growth of disturbances in CGCMs
and limit the predictability of ENSO. Using hybrid coupled models to compute optimal perturbations for gen-
erating CGCM ensemble forecasts may therefore be one way of circumventing the challenging problem of
computing such perturbations directly using a CGCM. The ability of CGCMs to support perturbation growth
via the mechanisms suggested by the hybrid coupled models is currently under investigation.

Acknowledgements

AMM was supported by a research grant from the NSF Division of Climate (ATM-9809790). We are indebted
to Dan Sorensen for making ARPACK so freely available.

Technical Memorandum No. 351 27



The Role of Air-Sea Interaction in Controlling the . . .

Appendix

Optimal Perturbations: An Illustrative Example

For readers not familiar with all of the ideas discussed in this paper, it is very instructive and illuminating to
consider a simple system as an illustrative example. The system we shall consider is a variant of the system
considered by Farrell and Ioannou (1996). Consider the autonomous linear system described by:

∂s
∂t

= As (A1)

wheres represents a 2-dimensional state vector, and:

A =
(

σ1 (σ2−σ1)cotδ
0 σ2

)
. (A2)

The parametersσ1, σ2 andδ are real and 0≤ δ ≤ π. Eigensolutions of (A1) will be denoteds1(t) = a1ŝ1eσ1t

ands2(t) = a2ŝ2eσ2t , whereŝT
1 = (1,0) andŝT

2 = (cosδ,sinδ) are the unit eigenvectors of (A2) (superscriptT
denotes the transpose), with eigenvaluesσ1 andσ2, anda1 anda2 are the initial eigenmode amplitudes.

Solutions of (A1) ares(t) = R(t)s(0), whereR(t) = eAt is the propagator. The normN (t) = sT(t)s(t) will
be used as a measure of perturbation amplitude, and the perturbation that produces the maximum value of the
growth factorµN = N (τ)/N (0) during the time intervalτ is the right singular vector ofR(τ) with largest
singular value (Noble and Daniel, 1988). This perturbation is also referred to as the optimal perturbation, and
τ as the optimal growth time. As an example, Fig. A1a showsµN (τ) vs τ, for the optimal perturbation of (A1)
whereδ = 4π/5, σ1 = −0.05 andσ2 = −0.5, and reveals that for a range ofτ perturbation growth is possible
(µN > 1) even though boths1 ands2 decay in time.

A specific case is illustrated in Figs. A1b-e whenτ = 4, which is the case for whichN achieves its largest
value in Fig. A1a for the current choice ofδ, σ1 andσ2. Figures A1b-e show the time evolution of the optimal
perturbation, denoted OP, and its projection on the eigenmodess1 ands2. At time t = 0, OP hasN (0) = 1.
Figures A1c-e show that the rapid decay ofs2 compared tos1 causes OP to rotate in the direction ofs1 and
grow in amplitude during the intervalt ∈ [0,4]. For t > 4 OP decays in amplitude.

The growth factorµN of OP depends on the eigenvaluesσ1, σ2, and on the angleδ between the eigenmodes.
This dependence is illustrated in Figures A2ab which show contours of log10(µ) for σ1 vs δ andσ2/σ1 vs δ
for particular parameter combinations. A wide range of situations are captured by Figs. A2ab corresponding
to different combinations of growing and decaying eigenmodess1 ands2. The angleδ is a direct measure of
the linear dependence of the eigenmodes (see Fig. A1b). Whenδ = π/2, A is a normal matrix and̂s1 andŝ2

are linearly independent and orthogonal. In this case no perturbations can grow faster than the most unstable
eigenmode of the system, and ifσ1 < 0 andσ2 < 0 all perturbations must decay in time as confirmed by Fig.
A2a. Forδ 6= π/2,A is a non-normal matrix and its eigenmodes are linearly dependent. Asδ→ 0 orδ→ π large
transient perturbation growth is possible and Figs. A2ab indicate thatµN → ∞ even when both eigenmodes
decay in time. When at least one of the eigenmodes is unstable, Fig. A2ab shows that the OP grows much more
rapidly than the exponential growth anticipated for the most unstable eigenmode.

Due to the large computational cost, it is possible to compute only the most unstable member of the eigenspec-
tra for the complex coupled models described in the main text. Therefore, it will not be possible to compute the

28 Technical Memorandum No. 351



The Role of Air-Sea Interaction in Controlling the . . .

a

µN(τ)

0.0

0.5

1.0

1.5

2.0

 0  2  4  6  8 10 12 14 16 18 20

Time τ

δ=4π/5
σ1=-0.05
σ2=-0.5

OP

s1

s2

t=0.0, ℵ=1.00

b

δ

OP

s1

s2

t=2.0, ℵ=1.18

c

OP

s1

s2

t=4.0, ℵ=1.25

d

OP
s1

s2

t=6.0, ℵ=1.20

e

Figure 1: A1: (a) The growth factorµ vs τ of the fastest growing optimal perturbation of the 2× 2 system
described by equations (A1) and (A2) for the parameter choice indicated. (b-e) The relative orientation of OP,
s1 ands2 as a function of timet for δ = 4π/5, σ1 = −0.05, σ2 = −0.5 andτ = 4. In each case the size of the
L2-normN is indicated.
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Figure 2: A2: (a) A contour plot of log10(µ) for σ1 vs δ for the caseσ2 = −0.5 andτ = 8. The numbers on
the right hand ordinate represent log10 of the growth factor of the L2-norm for a perturbation with the structure
of the most unstable eigenmode whenσ1 > 0. (b) Same as (a) except forσ2/σ1 vs δ for σ1 = 0.01 andτ = 8.
Shading indicatesµ < 1 andν1 = 1/cos(δ− π/2). (c) A schematic showing the relative orientation of the
eigenmodes of equations (A1) and (A2) and the adjoint eigenmoder̂1.
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anglesδ directly. However, an alternative measure of the degree of non-normality ofA can be computed follow-
ing Farrell and Ioannou (1999) that makes direct use of the biorthogonality relation between the eigenvectors
of A and ofAT , namely:

ŝT
n r̂m(σn−σm) = 0 (A3)

wherer̂m are the eigenvectors ofAT , often referred to as the adjoint eigenmodes. For the system considered
here,r̂1 is orthogonal tôs2 andr̂2 is orthogonal tôs1.

Consider now:

νn =
|r̂n||ŝn|
r̂T

n ŝn
=

1
cosηn

(A4)

whereηn is the angle subtended byŝn andr̂n. For the case considered here,r̂T
1 = (sinδ,−cosδ) andr̂2 = (0,1).

The relative orientation of̂r1 andŝ1 is illustrated in Fig. A2c where clearlyη1 = δ−π/2. Figure A2c indicates
that asδ → π or δ → 0, the angleη1 →±π/2, in which caseν1 → ∞. Thus a large value ofν1 is indicative of
a highly non-normal system. This idea is illustrated in Fig. A2ab where log10(µ) is also shown as a function of
σ1 vsν1 andσ2/σ1 vsν1. νn is a useful measure of the degree of non-normality of each eigenmode of systems
more complicated than that considered here, and can be readily obtained when only a handful of eigenmodes
and their corresponding adjoint eigenmodes can be computed.

Figures A2ab reveal that optimal perturbation growth (log10(µ) > 0) is possible for a wide range of parameters,
and that the same growth factor can be obtained for a range of parameter values. For the coupled models
considered in this study, the eigenmodes are complex so in addition to exponential growth and decay they
also oscillate in time. The oscillation frequency of the eigenmodes will also influence the optimal perturbation
growth factors.
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