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L. INTRODUCTION ‘

Data assimilation attempts to combine observed and predicted values of the state variables of a system in an
optimal way to produce the best possible estimate of the true state. The optimal combination of observed
and predicted quantities requires knowledge of the corresponding covariance matrices of observational and
short-term forecast errors. The former matrix is relatively easy to specify, since it depends primarily on
instruments whose characteristics are well known and whose errors are typically spatially uncorrelated.
Estimation of the covariance matrix of short-term prediction error is more difficult.

For a linear system, the Kalman filter (Kalman, 1960) produces the Best Linear Unbiased Estimate (BLUE)
of the state of the system at the final time of an observing period. The extended Kalman filter (see Ghil and
Malanotte-Rizzoli, 1991) is the natural generalization of the Kalman filter to weakly nonlinear systems. It
may be divided into a forecast step and an analysis step. In the forecast step,
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the analyzed state, x*(t, ), at time ¢, ,, and the covariance matrix of analysis error, P*(t;,), are propagated in
time. Here, M represents a discrete model for the evolution of the system; M represents a linearization of
M; Q represents the covariance matrix of model error; and T denotes matrix transposition. (The notation
adopted in this paper is that proposed by Ide et al., 1995.) In the analysis step, | ‘
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the state of the system is estimated as a combiﬁation of observed and predicted values, and the forecast error

covariance matrix is modified to give the covariance matrix of analysis error, P(t). Here, H, is an

observatlon operator which estimates the observatlons, y;, from the predlcted state; Hl isa linearization of
., and K, is the Kalman gain matrix.

In current numerical weather prediction systems, the dimensions of the covariance matrices of analysis and
prediction error are of the order of 10°x10°. This is far too large for the matrices to be represented explicitly,
or for the equations 1b and 2b to be solved exactly. A number of simplifying approximations must be made.
Typically, correlations are approximated by fixed functions which are isotropic and largely homogeneous.



Equation .1b is replaced by a simple inflation of the variances of analysis error, which in turn are estimated
using a simplified version of equation 2b. Recently, several authors (for example, Cohn and Todling, 1995
and Ehrendorfer and Tribbia, 1995) have discussed approximations for equation .1b which incorporate the
tangent linear dynamics.

It is well known (e.g. Rabier et al., 1992) that, for the linear case and a perfect model, the Kalman filter and
four dimensional variational data assimilation (4d-Var) are equivalent in that they produce the same estimate
of the state of a system at the final time of an assimilation period. However, in 4d-Var the covariance
matrices of analysis and forecast error are not explicitly known. In a cycling analysis system, it is necessary
to determine an approximation for the covariance matrix of forecast error, since this provides the covariance
matrix of background error for the next ana1y51s cycle. It is also useful to be able to estimate the covariance
matrix of analysis error. - ‘

The mathematical tools provided by the introduction of adjoint techniques to data assimilation, together with
the mathematical clarity of the variational formulation of the data assimilation problem, provide the
opportunity for significantly improving on currently used methods for approximating the covariance matrices
of analysis and short-term forecast errors. This paper discusses a few methods for determining approximate
solutions of equations 1b and 2b in the context of variational data assimilation, with an emphasis on methods
which are sufficiently computationally efficient to be of practical use in an operational system.

2. OVERVIEW

Subject to the approximations that error growth is linear and that model error is small, the short-term forecast
error covariance matrix is given apprommately by
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where A is the covariance matrix for errors in the analysis which provided initial condltlons for the forecast
and M represents the tangent linear model integrated for the penod of the forecast.

Ehrendorfer and Tribbia (1995) point out that the eigenvectors of a covariance matrix provide the most
efficient approximation to the matrix in the sense that, for an approximation based on a given number of
vectors, they account for a maximum fraction of the variance. Ehrendorfer and Tribbia demonstrated, in a
simple model, how an approximation to P may be generated from its leading eigenvectors. However, their
algorithm requires explicit knowledge of the symmetnc square root of A, and this is unlikely to be available
in an operatlonal data assimilation system. Direct determmatlon of the eigenpairs of P, for example by
applying a Lanczos algorithm to MAM?, is also not possible in the variational context, since A is not known.

An algonthm to determine eigenpairs of P for a variational data ass1m11at10n system may be achieved by
con31dermg the generalized eigenvector equation
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Multiplying through by MA gives MAM"(Mx)=A(Mx). Thus, the vectors (Mx) are eigenvectors of P.



In section 2, it is demonstrated that in incremental variational data assimilation, A is equal to the Hessian
matrix of the cost function. If the cost function is quadratic (as it is in the incremental formulation), then
its gradient is a linear function of x and satisfies A'x=VJ(x)-V.J(0). Multiplication of a vector by A" may
therefore be achieved without explicit knowledge of A’ by means of a single gradient calculation.
Muitiplication of a vector by M™M requires an integration of the tangent linear model followed by an
integration of its adjoint. Thus, the operators required to evaluate both sides of equation 3 are available in
incremental variational assimilation. Methods exist (e.g. Scott, 1981) to find eigenvectors of a generalized
eigenvector problem given the ability to multiply arbitrary vectors by the matrices on either side of the
problem (in this case M™ and A™). Thus, solution of equation 3 represents a practical algorithm for
determining eigenpairs of P.

A significant factor for an operational assimilation system is the computational cost of the algorithms used.
The method outlined above is at least as expensive as a 4d-Var analysis. Any algorithm to determine the
eigenvectors of the génera]jzed problem must require at least one gradient calculation and one integration of
the tangent linear model and its adjoint for each eigenvector it determines. Each generalized eigenvector must
also be propagated by an integration of the tangent linear model to give the vectors (Mx), which are the
eigenvectors of P. Even if the cost is reduced by decreasing the spatial resolution of the model, the algorithm
is still likely to require a larger than acceptable proportion of the computer time available.

In practice, algorithms which directly solve the generalized eigenvector problem are computationally
expensive, requiring many more matrix multiplications for each eigenpair than are required to determine
eigenpairs of an ordinary eigenvalue problem. A more efficient approach is to consider the ordinary
eigenvalue problem, MAMTx=7\x. Since the analysis error covariance matrix is not available as an operator
in variational assimilation, it must be approximated. Three computationally efficient algorithms for
approximating A in variational assimilation are presented in section 3. The algorithms are compared in the
context of a simplified analysis system in section 4. In section 5, the most promising of the three algorithms
is evaluated in the ECMWF 3d-Var analysis system.

All the approximations of the analysis error covariance matrix presented in this paper take the form of low-
rank corrections to the background error covariance matrix, B. (B is an approximation of the covariance
matrix of forecast error for the preceding analysis cycle.) As an alternative to calculating eigenvectors of P,
approximations of the forecast error covariance matrix may be achieved by applying a modified low-rank
correction to an approximation of MBM". For two of the approximate analysis error covariance matrices
presented in this paper, the modification of the correction matrix may be achieved with a few integrations
of the tangent linear model. For the third method, under restricted circumstances, it may be achieved without
integrations of the tangent linear model or its adjoint using information generated during the minimization.
Approximations to MBM' may be generated by replacing B with a low-rank matrix of the form WW", where
W is a rectangular matrix comprising a few vectors. Two such approximations are discussed in section 6.

3. THREE METHODS FOR APPROXIMATING THE COVARIANCE MATRIX
OF ANALYSIS ERROR

Variational data assimilation minimises a cost function, J, which measures the closeness of fit of the analysis

to a set of observations, and to an a priori (background) estimate x" of the field being analyzed. Specifically,
the analysis is defined as the vector x* which minimises
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Here, H is an operator which, when applied to x, produces an estimate of the observation vector, y°. B is
the covariance matrix of (x* - x%), where x' is the true value of x, and R is the covariance matrix of (HXY-y°).
In incremental variational data assimilation, the nonlinear operator H(x) is'appi'oximated by the linear operator

H(x") + H(x-x"), where the matrix H represents the tangent linear operator of H. A consequence of this
approximation is that the Hessian matrix of the cost function is independent of x and is given by

J'=-B1+HTRH. _ )
The gradjent of the cost function at x* is zero. In the incremental formulation, this gives

B"(x“—x"—(x"‘—x')) + HIRIH(x*-x") + Hx*'-y%)=0, . N

which may be rearranged to give

@B'+HR'H) (x*-x") = B'(x®-x")+H'R(Hx"-y°). o @®

Multiplying each side of this equation to the right by its transpose, taking the ensemble average, and noting
that the covariance matrices of (x-x') and (Hx'-y°) are B and R respectively, gives the following expression
for the covariance matrix A of errors in the analysis. (It is assumed that background and observation errors
are uncorrelated.)

@ +HTR'H) AB+HRH)T - B +HRH)T. )

Hence
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Comparing equations 10 and 6 shows that in incremental variational data assimilation, the analysis error
covariance matrix is equal to the inverse of the Hessian matrix of the cost function. This classical
relationship is exploited in all of the methods for estimating A presented in this paper.

3.1.  The Randomization method ,
Rabier and Courtier (1992) used the randomization method to estimate the diagonal elements of the Hessian
matrix for a 4d-Var analysis. The method depends on the equivalence between the Hessian matrix and the
covariance matrix of the gradient, which may be derived as follows.

Consider the function

P - %(H(x)—-y")R-‘(H(x)—y")



where §=H(x")-£, and where & is a random variable with zero mean and covariance matrix R.

The gradient of J° at x=x" is H'R'E. This is a random variable with covariance matrix
HREER'H (12)

But, the covariance matrix of & is R, so the covariance matrix of the gradients of J° is simply H'R'H.
Substituting for H'R'H in equation 10 gives

ATl = B (V)Y | - 13)

An approximation to the inverse of the analysis error covariance matrix may be calculated by replacing the
covariance matrix of the gradients in equation 13 by the covariance matrix of a small sample of gradients.
The resulting expression for A is easily inverted using the Shermann-Morrison-Woodbury formula
(Shermann and Morrison, 1949). ‘ ‘ V

3.2.  The Lanczos method

The Lanczos algorithm (Lanczos, 1950) provides a method for calculating some of the eigenvectors and
eigenvalues of a matrix G, without requiring explibit knowledge of the elements of G. At the n® jteration
of the algorithm, a rectangular matrix Q, of orthonormal vectors and an n x n tridiagonal matrix T, are
generated, satisfying ‘ o -
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The eigenvalues of T, are approximations to the eigenvalues of G, and premultiplying the eigenvectors of
T, by Q, gives approximate eigenvectors of G.

It is well known (e.g. Paige and Saunders, 1975) that there is a close connection between the Lanczos
algorithm and conjugate gradient minimisation. It can be shown (see appendix A) that the vectors which
comprise the matrix Q, are proportional to the gradient vectors generated during conjugate gradient
minimisation with exact line searches of a quadratic form with Hessian matrix G. The elements of T, may
also be calculated from quantities generated during the minimisation. Applying this result to incremental
variational data assimilation allows simultaneous minimisation of the cost function and derivation of the
eigenpairs of the analysis error covariance matrix.

‘ }
If minimisation is carried out in terms of the transformed control vector ¥=L"'x, wher'@en the
Hessian matrix is equal to the sum of the identity matrix and a matrix of rank less than or equal to the
dimension of the vector of observations. Thus, most of the eigenvalues of the Hessian are equal to one and
the Hessian matrix in terms of  is well approximated by

M
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where A, and v, are selected eigenvalues and eigenvectors of the Hessian.

This matrix is easily inverted and transformed to model variable space, to give an
approximation to the analysis error covariance matrix in terms of x:

M
A=B+Y (4 -DAv)@Lvy". (16)
k=1 ~ ) ‘ .

The combined Lanczos and conjugate gradient algorithm requires that the cost function be strictly quadratic.
This restriction may preclude its use for the main analysis in an operational context. In particular, it prohibits
the adoption of variational quality control of observations via non-Gaussian statistics, as described by Dharssi
et al., 1992. However, one may envisage a system in which a preliminary (possibly reduced resolution)
analysis with a quadratic cost function is performed using the combined Lanczos and conjugate gradient
algorithm. This analysis would provide a good initial point and a preconditioner for the main analysis, as
well as providing an estimate of the analysis error covariance matrix.

3.3.  The BFGS method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1969) was developed in the context of
quasi-Newton minimization methods. For unconstrained minimization problems, it is generally regarded as
the best method of approximating the inverse of the Hessian (Dennis and Moré, 1977). The algorithm
generates a sequence of approximations to the inverse of the Hessian matrix of a cost function given a
sequence of vectors x, and gradients VJ(x,).

Let s, = x,-X,;, and y,=VJ(x)-VJ(x, ;). The sequence of approximations to the inverse of the Hessian matrix
is generated by the update formula ‘ ‘
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Here, {-,1 denotes an inner product, and x denotes the corresponding tensor product (that is (axb) is the

rank one matrix such that for any vector x, (axb)x = {b,x)a). The starting matrix, G®, should be a positive
definite approximation to the inverse of the Hessian matrix. In practice, G is usually chosen to be a
diagonal matrix. An efficient algorithm exists to multiply an arbitrary vector by G, without requiring
explicit construction of the matrix (Nocedal, 1980).

The inverse of G® is also easily expressed as an update formula:

YiXVr (G(k— 1)) _I(S [0 k) (G(k_ 1)) -1

G(k) -1_ G(k—l) -1,
( ) ( ) (yk S k> <Sk: (G(k—l))—l sk>

(18)

The BFGS approximation to the inverse of the Hessian matrix has a number of desirable properties (Dennis
and Moré, 1977). If G*" is a nonsingular symmetric positive definite matrix, and {¥,.8) >0 (a condition
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which can be enforced without significant loss of efficiency) then G® is also nonsingular, symmetric and
positive definite. G® also satisfies the quasi-Newton equations G* y;=s; for j=1,...k. It can be shown that
if y, and s, are generated using the quasi-Newton algorithm with exact line searches, then G® converges to
the inverse of the Hessian matrix in a finite number of steps.

Usually, minimization of the cost function in variational assimilation is not performed in terms of physical
variables. Rather, a change of variable is introduced to improve the rate of convergence of the minimization
problem. If the transformation from the space in which minimization is performed to the space of physical
variables is denoted by multiplication by a matrix U, then an approximation to the covariance matrix of
analysis error for physical variables is given by UG®U". This approximation may be generated using the
following transformation property of the BFGS update formula. Let U be nonsingular, U’ denote the adjoint
of U with respect to the inner product, (-4, and write equation 17 as G¥=F(G*",y,s,), then

UGPUr-FUGH YU, (U") Yy, Us). . 19
Thus, by transforming the vectors y, and s,, and providing a suitable starting matrix, the vectors generated
during minimization may be used to generate an approximate analysis covariance matrix in terms of physical
variables. Another application of the transformation property of the BFGS update formula will be considered
in section 8. — : ~ o
The transformation property is easily proved given the following identities (see appendix B):
Identity 1:  (axb)A = ax(A’b)
Identity 2: A(axb) = (Aa)xb

Let U be a nonsingular matrix. Multiplying equation 17 to the left by U and to the right by U", gives

S XS,
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Define §,=Us, and §,=(U")"y,, then (8,.§,) = (S.¥,)- Applying identities 1 and 2 gives
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which is simply the BFGS update formula with s,, y,, G*" and G® replaced respectively by §,, §,, UG*VU"
and UG®U",

Quasi—Néwton minimisation does not require explicit access to the elements of G®. In variational data
assimilation, however, it is useful to be able to determine some of these elements (in particular the diagonal
elements, which are the variances of analysis error). Specific elements of G® may be calculated by rewriting
equation 17, using identities 1 and 2, in the form'
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and noting that if the inner product is defined as
{a,b) = aTQb, ‘ ‘ 23)

then the matrix element (sxy),; is simply (8):Qy);-

In an operational data assimilation system, the vectors s, and y, are likely to be large enough that it is not
practical to store more than a few pairs of vectors. An approximate inverse Hessian may be generated from
the most recent pairs of vectors only. However, it is useful to retain some information from earlier pairs.
Gilbert and Lemaréchal (1989) proposed using a diagonal starting matrix which is updated at each iteration
using a diagonalized form of the BFGS update formula. The ability to determine the diagonal elements of
G®, combined with the transformation property, suggests an alternative method. For each k, the formula may
be applied in terms of the transformed variable z=Y, ,'x, where X, , is the estimate of the standard deviations
of analysis error, in terms of physical quantities, calculated at the previous iteration. The starting matrix, G,
should approximate the correlation matrix of analysis error. The approximate inverse Hessian in terms of
x is given by %, ;G™X, ;". This approach provides a form of dynamic scaling which is particularly useful
if an approximation to the standard deviations of analysis error is sought, since it is precisely this information
which is retained from earlier iterations. In the simplified analysis problem, the diagonal scaling of Gilbert
and Lemaréchal proved significantly more effective for the purpose of minimizing the cost function, but the
scaling described here proved more effective for estimating the standard deviations of analysis error (see
later). The two approaches may be combined, with the diagonal scaling of Gilbert and Lemaréchal used for
the minimization, and the vectors generated during the minimization used together with the scaling described
here to estimate the standard deviation of analysis error.

4. RESULTS FROM A SIMPLIFIED 3D-VAR ANALYSIS SYSTEM

The three methods described above have been evaluated for a simple, univariate implementation of
incremental 3d-Var on a cyclic one-dimensional domain consisting of 256 equally-spaced grid points. The
background error covariance matrix was chosen to have homogeneous correlations but spatially varying
variances. Observations were defined at 120 locations with a spatial density similar to the longitudinal
distribution of the mid-latitude radiosonde network. For each location, three observations were specified.
All observation errors were uncorrelated and all had standard deviation equal to the mean standard deviation
of background error.

The correlation structure function and the locations of the observations used are shown in figure 1. Figures
2a and 2b show the standard deviations (in arbitrary units) of background and analysis error for the system,
together with approximations generated using the techniques described above. For figure 2a, 35 random
gradients were used for the randomization method, and 35 iterations were performed for the BFGS and
Lanczos methods. For figure 2b, 10 random gradients were calculated and 10 iterations were performed.
Within each figure, the computational cost of the three approximations was similar.
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The Lanczos algorithm generates an upper bound on [(J**)v-0v]/|v] for each approximate eigenbair, (v,0).
The Lanczos approximation to the covariance matrix of analysis error was generated using eigenpairs for
which this bound was smaller than 10% of the approximate elgenvalue The number of elgenpaus satlsfymg
the cntenon was S after 10 1terat10ns and 31 after 35 iterations.

For the BFGS method, minimization was carried out in terms of the variable ) using the diagonal‘ scaling of
Gilbert and Lemaréchal. G® was set to the identity matrix in %-space (i.e. to the covariance matrix of
background error).The approximate standard deviations marked ‘‘inner scaling’’ in figure 2 were also
generated using the diagonal scaling of Gilbert and Lemaréchal, whereas those marked ‘‘outer scaling’” were
generated from the same vectors, but used the further transformation to the variable z described in section
33 : o

Figure 2a demonstrates that even though the number of vectors used is much smaller than the dimension of
the problem, all three methods succeed in approximating the main features of the analysis error variances.
After 35 iterations (fig. 2a), both versions of the BFGS method tend to underestimate the variances of
analysis error. The outer scaling method successfully represents the small scale ﬂuctuations,’ whereas inner
scaling produces an approximation which is too smooth and which significantly underestimates the peaks of
analysis error standard deviation. After 10 iterations (fig.2b), the inner scaling method produces a good
approximation in regions where the standard deviation of analysis error is small, but a poor approximation
elsewhere. The outer scaling method gives a more accurate approximation of peak standard deviations, but
overestimates smaller values. '

The randomization and Lanczos methods overestimate the standard deviations of analysis error. After 35
iterations, the Lanczos approximation is clearly better than either the randomization or BFGS approximations.
After 10 iterations, however, the BFGS method is the most successful. The relatively poor performance of
the Lanczos algorithm in this case may reflect the fact that only five vectors are used to generate the
approximation, whereas the BFGS and randomization methods extract useful information from ten gradients.

The approximate analysis error variances produced by the Lanczos algorithm are equal to the background
variances minus the sum of the squares of elements of a set of vectors. 'As the number of vectors is
increased, each additional vector can only decrease the estimated variance. Since the approximation
converges to the true variances of background error, it follows that the approximate analysis error variances
lie strictly between the true values and the corresponding variances of background error. For exact line
searches, the BFGS method also converges to the true analysis error covariance matrix after a finite number
of steps (Dennis and Moré, 1977). The randomization method produces unbiased estimates of the elements
of the Hessian, but the convergence of these estimates is slow, with the expected error proportional to the
square root of the number of vectors. The elements of the analysis error covariance matrix also converge
slowly. Furthermore, they are biased.

Figure 3 shows contours of the differences between the approximate and true correlation matrices of analysis
error for the various methods for 35 iterations of minimization and 35 random vectors. For the BFGS
method, differences are shown for both of the scaling techniques described in section 3.3. The contour
interval is 0.1 and solid contours indicate positive differences. For clarity, the zero contour is not shown.



For the BFGS method, outer scaling gives a better estimate of the long range correlations than the diagonal
(inner) scaling of Gilbert and Lemaréchal, whereas inner scaling is better at estimating the correlation
structure near the diagonal. However, the bands of positive and negative differences near the diagonal for
both implementations of the BFGS method indicate that the correlation structure is too broad. This reflects
the use of the background error correlation matrix as the starting matrix G®. Randomization is better than
the BFGS method at capturing the structure near the diagonal, but produces spurious correlations for large
separations. The Lanczos method successfully estimates the correlation structure at all ranges.

5. RESULTS FROM THE FULL ANALYSIS SYSTEM

The combined Lanczos and conjugate gradient algorithm has been implemented in the ECMWF 3d-Var
assimilation system (Courtier, et al., 1993). As described in section 3.2, it is desirable to employ a change
of variable which transforms the background error covariance matrix to the identity matrix. This is not
possible for the current formulation of the background error term in the ECMWF system. The results
presented here have therefore been performed with a modified system for which the background error
covariance matrix is defined as B=LL" and where the change of variable implied by L is

1 1
C 2x;'Wi, 0 0
G a-lgs zc) (24)
A= 2y —lgy2 .
0 C 227WZ, 0 b
el 1 1 1 1
C 2By (Wip-W5p)P 0 C 22, Wi

Here, C, D and P are respectively the vorticity, divergence and linearized geopotential components of x. The
matrices, C, Zg, WRC’ etc. are unmodified from the standard formulation. C is a correlation matrix; ZC,
Y, and X, are diagonal in physical (gridpoint) space, where their diagonal elements are the standard
deviations of background error for vorticity, divergence and geopotential; Wee, Wep, W, and W, are
diagonal in spectral space, and assign wavenumber-dependent proportions of the background error to balanced
and unbalanced components; © represents the operator which, when applied to a vorticity field, gives the
corresponding linearly balanced geopotential.

The rationale behind this choice of change of variable is best understood by considering the implied inverse
change of variable. Writing y=(),.X.Xs)"» the vorticity, divergence and linearized geopotential are given by

D-W2E ,C2y, (25)

A 1 1
p- 9(¢)+W63(2 pC’xg-W,;"Po(C)).
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For most wavenumbers, the diagonal elements of Wy, are zero. For these wavenumbers, the vectors %, %,
and ¥, represent normalized versions of the vorticity, divergence and the unbalanced part of the linearized
geopotential. The balanced part of the geopotential is determined from the vorticity. This ensures that
correlations between vorticity and the balanced component of geopotential are correctly represented. For a
few low wavenumbers, corresponding to tidal modes, the diagonal elements of Wy, are set equal to the
corresponding elements of Wg,. This reduces to zero the correlations between mass and vorticity for tidal
modes. '

Eigenvectors of the Hessian of the cost function were calculated for an analysis for 12z on 1/6/1995. After
82 iterations of minimization, 52 eigenvectors were known to a relative accuracy of 10%. The analysis used
the same observations as were used in the ECMWF operational analysis for the same date, with the exception
of scatterometer measurements, which were removed since a linearized version of the observation operator
for scatterometer data was not available. The standard deviations of background error currently used in the
ECMWEF variational assimilation have extremely large values over Antarctica. A consequence of this is that
all the eigenvectors of the Hessian determined by the Lanczos algorithm have maximum amplitude over
Antarctica. To avoid this problem, the standard deviations of background error for wind were set constant
on model levels. '

Figure 4 shows eigenvectors of the Hessian corresponding to the first, second, third and fifty-second largest
converged eigenvalues. The. vectors are plotted after transformation to physical space, and only the
temperature component on model level 18 (close to 500hPa) is shown for each vector. - The three leading
eigenvectors have maximum amplitude over Europe, reflecting the high density of data in this region.
Vectors corresponding to smaller eigenvalues show significant amplitudes at other geographical locations.
The eigenvalues of the Hessian for the four vectors shown are approximately 1776, 750, 784 and 51.

Figures 5a and 5b show estimated differences between the standard deviations of background error and the
standard deviations of analysis error for geopotential on model level 18. The estimate shown in figure 5b
was produced using 52 eigenvectors, whereas the estimate shown in figure 5a was produced using the 24
eigenvectors which were known to 10% accuracy after 40 iterations of minimization. The two estimates have
similar patterns, with strong maxima in the data-rich areas of Europe and North America, and weaker maxima
over Alaska and eastern China. However, the maxima are much smaller when 24 vectors are used than when
52 vectors are used.

Equation 16 implies that an eigenvector has a significant influence on the approximate standard deviations
of analysis error if the eigenvalue is not close to one and the eigenvector has significant amplitude when
transformed to physical space. Both criteria are well satisfied by all the eigenvalues determined during the
analysis. It is likely that a significant proportion of the true difference between the standard deviations of
background and analysis error is unaccounted for by the known eigenvectors of the Hessian. Nevertheless,
the similarity between the patterns of the differences between standard deviations of background and analysis
error shown in fig. 5 suggests that it may be possible to account for the effect of unknown eigenvectors on
the estimated standard deviations of analysis error by artificially increasing the influence of the known
eigenvectors.
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6. DIAGNOSING STANDARD DEVIATIONS OF BACKGROUND ERROR

In a multivariate analysis system, the imposition of balance conditions on the correlations of background error
may result in standard deviations of background error which are not known explicitly. For example, the
standard deviations of background error for linearized geopotential for the covariance matrix corresponding
to the change of variable defined by equation 24 differ significantly from the standard deviations specified
by Xp. It is useful, therefore, to be able to diagnose the standard deviations of background error. Two
methods are discussed in this section.

If the background error covariance matrix is of the form B=LLT, the standard deviations of background error
may be estimated using randomization. Consider a set of K random vectors ;,)...Xx drawn from a
distribution with covariance matrix equal to the identity matrix. The elements of these vectors are
independent random variables and are easy to produce using a random number generator. Applying L to each
vector gives a set of vectors X;,X,,...,.Xx drawn from a distribution with covariance matrix B. The sample
standard deviation of each element of x gives an estimate of the actual standard deviation implied by B.

Each element of each random vector x; is a weighted sum of elements of j;, the weights being the elements
of one row of L. The central limit theorem applies, so to a good approximation, the elements of x; are
normally distributed. The sample mean variance of each element of x is consequently a chi-squared variable.
Elementary statistics shows that the standard deviation of the relative error in the estimated standard deviation
of the element is (2K)" Thus, 50 vectors are required to achieve a standard deviation of relative error for
the estimated standard deviations of 10%.

An alternative method for estimating the standard deviations of background error is to approximate B by
VAVT, where V is a rectangular matrix consisting of a few leading eigenvectors of B, and where A is a
diagonal matrix whose diagonal entries are the corresponding eigenvalues. The eigenpairs may be determined
using a Lanczos algorithm. The approximate standard deviations of background error are given by calculating
the diagonal of VAV". An advantage of this approach is that it does not require that B is of the form LLT.

Both approximations to B may be written in the form WW", where W is a rectangular matrix containing a
few vectors. Replacing W with SW, where the matrix S represents a change of variable, gives an
approximation to SBS”, the background error covariance matrix for the transformed variable y=Sx. For
example, if S represents projection onto Hough modes, the implied standard deviations of background error
for each mode may be estimated.

Figure 6 shows standard deviations of background error for the simplified analysis system described in section
4, estimated using the two techniques. 50 random vectors were used for the randomization approximation
and 25 eigenpairs were used for the eigenvector-based approximation. The eigenpairs were determined using
40 iterations of a Lanczos algorithm. The randomization approximation has large oscillations around the true
standard deviations. However, the oscillations are of a smaller scale than the spatial variation of the true
standard deviations of background error and could be removed by filtering to leave an accurate approximation
to the standard deviations of background error. The eigenvector-based approximation is smoother than the
randomization approximation, but underestimates the true standard deviations of background error. This is
because the approximation effectively sets the eigenvalues for unknown eigenvectors to zero.
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The randomization approximation of B has been implemented in the ECMWF variational analysis system for
the change of variable defined by equation 24. Figure 7 shows an estimate, calculated from 50 gradients,
of zonal mean standard deviations of background error for geopotential for the analysis discussed in section 5.
The approximate standard deviations show many expected features. In particular, the standard deviations are
smallest in the tropics in the lower troposphere and increase with altitude and distance from the equator,
reaching maxima at high northern and southern latitudes in the upper troposphere. Note that the standard
deviations are nearly symmetric about the equator, since for this analysis, the standard deviations for wind
were set constant on model levels.

7. PRECONDITIONING

Preconditioning can significantly increase the speed of convergence of the conjugate gradient minimization
algorithm. Consider the quadratic function

j(x)-%x ™Mx+bTx+c . S - Co (26)

The preconditioned conjugate‘ gfadient algorithm for minimizing f is equivalent to'conj‘ugate gradient
minimization of '

_1 _1 _1
g(y)--;:y TUIMU (U 2b)Ty+e @7

where y=U"?x, and ‘where U is the symmetric square root of a positive definite matrix U, called the
preconditioner. For fast convergence, the preconditioner should be chosen to approximate M . In particular,
convergence will be fast if the eigenvalues of UMU™ are ‘‘clustered”’.

In a cycling analysis system, it is probable that the Hessian matrix of J° will vary little from day to day, since
the locations of many of the observations and the covariances of observation error will be unchanged. This

suggests that a preconditioner may be constructed from vectors generated at an earlier analysis cycle.

Suppose we have an approximation to the Hessian matrix for an earlier analysis cycle of the form

J/~B e WW T ‘ ~ - (28)

If the background errbr covariance matrix changes little from cycle to cycle, then a‘bgood‘ approximation to
the Hessian for the current cycle is provided by B"+WWT. Applying the change of variable L, where
B=LL", gives k '

LTJx”L~I+@TW)@TW)T. | ; 29

Now, (L™W)(L™W)T is a matrix of low rank, and so has only a few non-zero eigenvalues. The eigenpairs
corresponding to the non-zero eigenvalues may be determined by applying a sequence of Householder
reductions to (L™W) to reduce it to upper triangular form. This is equivalent to performing an orthonormal
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(eigenvalue preserving) transformation of (L™W)(L™) to give a matrix which is zero everywhere except
for a small block in the upper left corner. The eigenvalues of this block are the same as the non-zero
eigenvalues of (L"W)(L™W)", and are easily found using standard methods. The corresponding eigenvectors
of (L"W)(L™W)" are also easily determined from those of the small block.

Once the eigenpairs, (pk,vk) of (LTW)(LTW)T are known, a precondltloner is given by selectmg eigenpairs for
which the eigenvalue is close to one to give

K
U-I1+Y" (A-Lyvpyd o . (30)
k-1 ; ,

where A,=1/(1-p).

Figure 8 shows the effect on the convergence of the cost function of the ECMWF 3d-Var analysis system
of preconditioning the combined conjugate gradient minimization with either 19 or 68 eigenpairs of the
Hessian. In this case, the analysis for which the eigenpairs were calculated and the preconditioned analysis
were for the same date. Consequently, the vectors from which the preconditioner was constructed are exact
eigenvectors of the Hessian. The use of preconditioning clearly has a beneficial effect on the convergence
rate for the first 20 iterations.

Also shown in fig. 8 is the convergence rate for the quasi-Newton method. The difference in convergence
between the quasi-Newton method and the unpreconditioned conjugate gradient method is due the use of
exact line searches in the latter. For a quadratic cost function, it is possible to implement exact line searches
in the quasi-Newton algorithm. The convergence rates and computational costs of the quasi-Newton and
(unpreconditioned) conjugate-gradient algorithms would then be equal. It should also be noted that the
preconditioner described above can be used to accelerate the quasi-Newton algorithm.

8. TEMPORAL PROPAGATION

As discussed in section 2, one possibility for estimating the covariance matrix of short-term pI'CdlCthI] error
is to determine eigenpairs of P. In variational assimilation, this requires either the (computationally
expensive) solution of the generalized eigenvalue problem represented by equation 3, or the solution of the
ordinary eigenvalue problem MAM"x=\Ax in which the analysis error covariance matrix is approximated.

An alternative approach to the calculation of eigenvectors of P is to propagate directly an approximation to
A. The appfoxjmate analysis error covariance matrices presented in this paper all take the form of low-rank
corrections to B. In section 6, low-rank approximations to B were discussed. Combining the approximations
for A and B gives approximations which may be propagated in time at the cost of transforming a few vectors.
The approximations generated in this way will be less efficient than approximations based on the eigenvectors
of P, but may be computationally cheaper to calculate, since they do not require the solution of an
eigenvalue problem.

The randomization and Lanczos approximations for A may both be written in the form
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A~B-VVT 31

where V is a rectangular matrix consisting of a few vectors. Using one of the approximations to B described
in section 6, we may write BsWW". This gives a (rank-deficient) approximation to A which is easily
propagated in time to give

P~(MW)(MW)T-(MV)(MV)T- ' ' (32)

This approximation has been calculated for the simplified analysis system described in section 4. In this case,
the model for which M is the tangent linear operator integrates Burger’s equation

—+X—~p—=0 o | | , , : (33)

where s represents distance in metres around the 45° constant-latitude circle. The period of the domain, L,
is roughly 28.3x10°m and the diffusion coefficient, i, is 10°m’s”. At initial time, the true state is defined

as x=20+15sin(2rs/L). The equation is discretized by representing X as a truncated fourier series. The
nonlinear term is calculated using the transform method on a non-aliasing grid and Euler-backward (Matsuno)
time integration is used. Flgure 9 shows the true initial state and the background state for the analysis,
together with 12 hour and 24 hour forecasts from the background state

Standard deviations of 24 hour forecast error for the simplified system were estimated using equation 32.
W was constructed from 25 eigenvectors of B and V was constructed from 31 eigenvectors of the Hessian.
The estimated standard deviations of forecast error are shown in figure 10. Also shown are the standard
deviations of forecast error corresponding to the approximation UAU?, where U contains 28 eigenvectors of
the approximate forecast error covariance matrix MAMT in which A is the Lanczos approximation to the
analysis error covariance matrix based on 35 eigenvectors. Both methods capture the main features of the
true standard deviations of forecast error. However, the use of an approximate covariance matrix of
background error for the direct propagation method gives an approximation to P which is not positive
definite. This gives negative variances of forecast error, indicated in figure 10 by the regions where the
approximate standard deviations drop below zero. The direct propagation method also uses twice as many
vectors as the eigenvector-based approximation. However, the number of integrations of the tangent linear
model required to directly propagate the approximate covariance matrix of analysis error is equal to the
number of vectors, whereas the eigenvector-based approximation requires one integration of the tangent linear
model and one integration of the adjoint model for each iteration of the Lanczos algorithm. The 28
eigenpairs used for the eigenvector-based approximation were determined after 50 iterations. Thus, direct
propagation of the approximate analysis error covariance matrix required fewer integratiohs.

Direct propagation of A using the randomization approximation to B was also tried. The approximate
standard deviations of forecast errors (not shown) had large spurious oscillations which could only be reduced
to reasonable levels by using impractically large numbers of random vectors.

The BFGS approximation to A", and the corresponding approximation to A are of a less simple form than
the Lanczos and randomization approximations. Nevertheless, the transformation property of the BFGS
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update formula allows a simple expression of an approximation to the covariance matrix of forecast error.
Replacing U by M in equation 19 gives

P~FMG*OM*, M)y, Ms,)). | o (34)

The vectors Ms, are differences in x propagated by the tangent linear model. In a 4d-Var analysis, these
vectors are generated during the minimization. The vectors y, are differences in gradients of the cost function
evaluated at the initial time, t;, of the forecast. In general, the operator (M")" is not available, so it is not
possible to calculate the BFGS approximation to the forecast error covariance matrix. However, in a 4d-Var
analysis for which observations occur only at or after the time, t,, at which the approximate forecast error
covariance matrix is required, M" propagates the gradient from time t, to time t,. In this case, the vectors
(M")y, are differences in V.J evaluated at t,. These vectors are generated during the 4d-Var analysis. Thus,
for the restricted circumstances of a 4d-Var analysis with observations only at or after t,, an approximation
to PP may be calculated from information generated during the minimization of the cost function.

It is well known (Ghzl and Ma’anotte-Rzzzolz 1991) that, for lmear dynan:ucs and neghglble model error, 4d-
Var and the Kalman ﬁlter produce identical analyses for the end of the 4d-Var analysis penod In a Kalman
filter, an analysis step is performed at the validity time of each observation. The period between observations
is usually small, so the approximations of linear dynarmcs and negligible model error hold to good accuracy,
and the analysis step of the Kalman filter may be performed using a 4d-Var algorithm. This 4d-Var analysis
uses observations only at the end of the analysis period. Consequently, the BFGS approximation to the
forecast error covariance matrix may be generated from the vectors calculated during minimization of the
‘cost function. Thus, by replacing the true forecast error covariance matrix of the Kalman filter by the BFGS
approximation, an efficient approximate Kalman filter may be implemented. The effects of model error may
be incorporated by modifying the appro)umate forecast error cova.nance matrix by, for example, adding a
matrix representmg the covariance matrix of model error

0. CONCLUSIONS o

Three methods for estimating the covariance matrix of analysis error in incremental variational data
assimilation have been presented. The methods are sufficiently computationally efficient to be used in an
operational analysis system. All three methods produce reasonable estimates of the variance and covariance
structure of analysis error in a one-vdimensional, univariate implementation of 3d-Var.

The most promising method (the Lanczos algorithm) has been evaluated in a full meteorologioal 3d-Var
analysis system. It has been demonstrated that the horizontal pattern of analysis error variance can be
determjned with relatively few vectors. The method also provides a good ﬁrst—gueés and a preconditioner
which can be used to accelerate a subsequent analys1s However, a significant proportion of the difference
between the variances of background and analysxs error was not explained by the first 52 eigenvectors to be
determined by the Lanczos algorithm.

Two low-rank approximations to the backgrourld error covariance mairix were demonstrated. The

approximations allow diagnosis of the true standard deviations of background error for a multivariate analysis
system in which the standard deviations of background error are not explicitly known.
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'The approximations to the covariance matrix of analysis error presented in this paper all consist of low-rank
corrections applied to the covariance matrix of background error. Propagation of the approximations may
be achieved by propagating the background error covariance matrix and the corrections. The former may be
achieved with a few integrations of the tangent linear model if the background error covariance matrix is
replaced by a low-rank approximation. For the randomization and Lanczos approximations, propagation of
the corrections to the background error covariance matrix may also be achieved by a few integrations of the
tangeht linear model. For the BFGS approximation, propagation requires the inverse of the adjoint model.
This is not generally available in 4d-Var. However, in the restricted case of a 4d-Var analysis with
observations only at or after the time at which the forecast error covariance matrix is required, the information
required to propagate the BFGS matrix is generated during minimization of the cost function. This allows
an approximate Kalman filter to be implemented which is as computationally efficient as 4d-Var.

An alternative to direct propagation of an approximate covariance matrix of analysis error, is to approximate
the forecast error covariance matrix using a few leading eigenvectors. These veCto:s may be calculated
without approximation by solving a generalized eigenvalue problem. Unfortunately, existing algorithms for
solving such problems are computationally expensive. A more efficient alternative is to solve the ordinary
eigenvalue problem MAMx=\x, in which A is approximated. This approach has advantages over the direct
propagation method. In particular, the apprOXimate forecast error covariance matrix is positive definite. The
eigenvector-based approximation is also more efficient, requiring fewer vectors to be stored for comparable
accuracy. - | ‘ ' |
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Fig. 1: Correlation structure function and observation locations for the simplified analysis system. The locations of the
observations are shown by dots. :
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Fig. 2: Estimated standard deviations of analysis error for the simplified analysis system produced (a) using 35 gradients,
(b) using 10 gradients. The standard deviations of background error and the true standard deviations of analysis
error are also shown.
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Appendix A: The Combined Conjugate Gradient and Lanczos Algorithm

Consider the quadratic function
: j(x)-%x ™x+b Tx+c. (35)

Given an initial point, X,, and an initial descent direction, d,, the conjugate gradient algorithm for minimizing

fis

Xpq = Xprod, ,
B = ~Vfx,y) (36)
Ay = Bra+Ydy

where %=(g",,18.1)/(8"&,) and where a, is the value of o which minimizes f along x,+0id,.

By eliminating d, and d,,; from equations 36 and noting that M(x,,,-x,)=(g,,,-g,), it is straightforward to
show that g, satisfies the following three-term recurrence

1 Y
—— 8., (M-8, Dg,, +—2g,=0 (37)
ak+l . ak

where 8,,=(1/04,)+(Y,/0y).
Now define q,=c,g, where c,=(g",g,)"2. The vectors q, are orthonormal and satisfy
Mg, -By.19k.1+ 0,9+ By (38)

where B, ;=-c/(0,C,,,)-

This is precisely the recurrence used by the Lanczos algorithm to determine eigenpairs of M.
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Appendix B: Proof of identities 1 and 2

Letabx e R", A € R"XR", and let {-,) and x be respéctively an inner product and the corresponding tensor
product defined on R".

Consider [(axb)A]x. We have

[(@xb)Alx = (axb)(Ax)
= (b,Ax)a
= (A*bx)a
= [ax(A*b)]x.

Since this holds for arbitrary x, we must have (axb)A=ax(A'b). This proves identity 1.

Next, consider ((axb)x,y). We have

{axb)x,y) = (bxla,y)
= (bxXa,y)
= {a,yXb.x)
= {(bxa)yx)
— = {(bxa)*x,y).

This holds for arbitrary x and y, giving (axb)’=(bxa). Identity 2 is now easily proved using this result and
identity 1: :

A(axb) = ((axb)*A")*
= ((bxa)A™)*
= ((bx(Ag))*
= (Aa)xb.
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