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Summary: This paper reviews known results on the behaviour of the
solutions to both the partial differential equations governing the
complete motion of the atmosphere and various reduced versions of the
equations governing motions of direct relevance to weather forecasting.
These results usually depend on certain special conservation properties

of the equations which must be respected by numerical methods.
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1. INTRODUCTION

It has been recognised for a long time that successful numerical weather
prediction requires careful design of the numerical methods used to
approximate the governing equations. The basic requirements for
consistency and stability, together implying convergence, are set out in
Richtmyer and Morton (1967). While it is usually easy to check
consistency, proofs of stability of an approximation to a set of
nonlinear equations are not often possible. The pioneering work of
Arakawa (1966) suggested that exact preservation of integral invariants
could aid nonlinear stability, and this approach has proved fruitful

ever since.

Further progress in identifying stable and accurate methods requires a
greater understanding of the behaviour of the governing equations. No
proof of nonlinear stability is possible without proving that the
problem to be solved has a bounded solution. Similarly, a formally high
order of accuraéy does not result in the same high rate of convergence
except to a solution which is sufficiently smooth. There has been a

great deal of progress in understanding these issues in recent years.

It is not sufficient to consider the behaviour of the numerical methods
used in forecast models as methods for solving the full compressible
Navier-Stokes equations, even though these are the equations used. It is
also essential that the models are capable of exactly representing
important lower order balances, such as a state of rest in hydrostatic
balance. This paper therefore also reviews results on a range of
balanced models which describe most of the weather producing motions. It
is necessary that forecast models contain sufficiently accurate 'hidden'

approximations to the balanced motion,

The potential subject matter is very large, and this paper therefore
makes a selection of those topics which currently appear most important,
Section 2 deals with the implications of Lagrangian conservation
properties in incompressible flows. These properties are often of
fundamental importance in proving existence or good behaviour of

solutions to nonlinear equations, where the nonlinearity arises from
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advection terms. They should be accurately respected by numerical

methods, but it is very difficult te achieve this in practice.

Section 3 deals with three-dimensional inviscid incompressible flow. The
important extra effect included is vortex stretching. It is believed,
though not proved, that this term in the equations can produce infinite
vorticity in a finite time, and that this is the mechanism by which the
scale of motion is reduced in three-dimensional turbulence so that
viscous dissipation can balance the energy production, however small the
viscosity. The extreme nonlinearity of this process and the consequent
rapid reduction in scale means that it is grossly under-represented in
conventional Eulerian numerical models. In situations where this effect
is important, it may be impossible to obtain an accurate solution. While
the dissipation can be parametrized by grid-scale viscosity, there is no
way of ensuring that the large scale structure is correct. It is
therefore important to identify special cases where this type of vortex
stretchihg is not dominant, and resolvable long-lasting stable
structures can exist. The theories in this area are discussed. It is
important that any special conservation properties which ensure stable

structures are accurately represented by numerical schemes.

Most atmospheric features of direct relevance to weather forecasting can
be described quite accurately by simplified systems of equations, though
it is unlikely that any one simplified system can describe all such
features. The hydrostatic relation is very accurate on all scales that
can be represented in global models either now or in the next 10 years.
Numerical methods even for non-hydrostatic equations need to be able to
represent a state of rest in hydrostatic balance exactly, which
restricts the choice of approximation that can be used successfully over
topography. In middle latitudes the geostrophic constraint is important
outside the boundary layer. Numerical methods for the primitive
equations need to be able to represent and maintain this balance in a
straight flow. In more general flows, the ageostrophic or divergent flow
can be calculated implicitly on making some scaling assumptions, for
instance that certain time derivatives are small. It 1s necessary that

if the same scaling assumptions are imposed on the numerical solution,
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the resulting implicit equations for the divergent or ageostrophic wind
fields have solutions close to the exact solution. The evolution of the
balanced flow is typically controlled by potential vorticity-
conservation in the absence of diabatic effects. The solution of the
adiabatic balanced problem must consist at all times of a rearrangement
of the initial potential vorticity. The numerical approximations to the
relevant terms in the primitive equations should reflect this. Section 4
discusses the requirements imposed by various definitions of balanced
motion. Section 5 reviews the resulting properties required from
numerical methods for the primitive equations, and discusses possible

compromises beiween the conflicting requirements.

2. ADVECTION AND REARRANGEMENT

2.1 The barotropic vorticity eguation

First consider the simple problem of solving the barotropic vorticity

equation:
d/dt + u.Vo = 0 (»
V.u = 0, 2)

The equations are to be solved in a region Q in R® with the normal
component of u zero on the boundary 8Q, It has been proved by Kato(1867)
that, given an initially smooth distribution of the vorticity, the
solution will remain smooth indefinitely. This is because the solution
at any time has to be a rearrangement of the initial vorticity. The
velocity field is determined from the vorticity field, the continuity
equation, and the boundary conditions by solving a Poisson equation for
the streamfunction. Inverting the Poisson operator acts as a smoother
and hence it can be shown that the velocity field is smooth. The
rearrangement of the vorticity is therefore also smooth, meaning that
two initially separated fluid elements cannot come arbitrarily close
together. The relation between this theorem and the phenomenoclogical
description of two-dimensional turbulence, which is governed by these
equations, has been discussed by Vallis(1985). It is important td note
that, though the problem is nonlinear and analytic solutions rarely
available, the structure of the solution is very simple. This makes it
easy to identify properties which should be satisfied by numerical

methods.
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A numerical solution of this problem should have a similar regularity
theorem which would ensure complete nonlinear stability, and hence
convergence to the analytic solution at all times as the resolution is
increased. The existence of smooth solutions indicates that the ultimafe
convergence rate will be that predicted by a standard truncation error
analysis. The proof of the theorem depends on three facts:

(1) The values of vorticity are bounded by their initial values,

(11)The area of fluid associated with any value of the vorticity is
conserved, '

(1ii)The stream function and hence the velocity field is determined
from the vorticity by a Poisson equation whose solutions are controlled
by a regularity result and a maximum principle.

(1) and (ii) together imply conservation of the integral of any function

of the vorticity.

Property (iii) is easily enforced if a standard finite difference,
finite element or spectral method is used to solve the Poisson equation.
If, however, the inversion is done directly into velocity components
which cannot be directly related to a discrete streamfunction, then the
stability and convergence of this step cannot be guaranteed. This
requires the use of the Arakawa C grid for finite difference schemes, or
an appropriate choice of finite element approximation, see

Thomasset (1981). Failure to observe this could lead to grid-scale
instability requiring filtering.

Exact enforcement of both (i) and (i1i) is impossible unless a special
Lagrangian method is used in which the vorticity is assigned a discrete
set of values initially which are then simply rearranged during the time
integration. The closest approach to this is the vortex 'blob’ method of
Chorin (1980). THere are still difficulties with (iii) because the
implied vorticity is not smooth and the method has to be modified to
allow regularity results to be proved. Such methods are difficult to
extend to more general problems and it is therefore necessary to
compromise. Property (i) can be satisfied by upstream differencing, but
this violates property (ii) by increasing the area assigned to the

intermediate values of o and reducing that assigned to the extreme
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values. More accurate versions of upstream differencing, e.g.
Smolarkiewicz (1984), or semi-Lagrangian methods, Robert (1982), Bates
and MacDonald (1982) may enforce (i) with acceptably small errors in
(11). The Arakawa schemes conserve the first and second moments of w as
an attempt to conserve all the moments. This enforces neither (i) or
(ii) exactly but the conservation of two moments should prevent

excessive errors.

2.2 Buoyancy driven flow

The second example of a problem whose solutions are controlled by a
rearrangement property is that of two-dimensional incompressible flow in

a vertical cross-section:

ou/dt + u.Vu + dp/dx = 0 (3)
dw/dt + u.Vw + op/dz - g8/685 = 0 (4)
08/dt + u.V6 = 0O (5)
du/dx + bw/bz = 0, (6)

The equations are to be solved in a region Q in R* with coordinates

(x,2) and velocity u = (u,w). 0 is the buoyancy. The boundary condition
is that there is no normal flow. A scalar vorticity can still be defined
which governs the evolution but is not conserved. It obeys the equation

da/dt + u. Vo - (g/8,)06/0x = 0 (7

These equations conserve energy and buoyancy. The solutions are
controlled by the requirement that 8 is an area-preserving rearrangement
of its initial values. Given smooth initial data for u and 8, »8/dx is
bounded and so @ can only change at a bounded rate. While o remains
bounded, the velocity field must stay smooth and, in particular, fluid
parcels initially a finite distance apart cannot come arbitrarily close
together. This means that d8/>x will remain bounded. In principle this
should allow a proof that the solutions remain smooth for arbitrary
finite time given smooth initial data; this argument has not yet,

however, been turned into a rigorous proof.
It is important that numerical approximations to this system contain a

good treatment of the unforced problem obtained by setting g=0. This is

because the property that initially separated fluid parcels remain
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separated is needed to restrict the value of »8/dx and hence the growth
in vorticity. In addition the rearrangement property of 8 must be
respected. This requires either accurate upstream or semi-Lagrangian

differencing, or a scheme that conserves the integrals of 8 and 6=,

It is not likely that energy conservation alone is a guarantee of good
behaviour as can be illustrated by the following example. Given an
initial atate of rest in hydrostatic balance, the energy E can be
written

E=E, - | g6z/8, dQ, (8)
where E, is a reference value. The minimum energy state possible by
rearrangement of the 8 values according to (5) is with 8 a function of z
only and with 6 increasing with z. If a small perturbation energy 3E is
added, and the equations integrated, an energy conserving scheme will
maintain a total energy of E+3E. However, if the rearrangement property
of 6 is not exactly enforced, the solution may be able to extract energy
from the supposédly minimised basic state by increasing the mean

stratification and converting the unphysical extra energy into kinetic

energy.

3. THREE DIMENSIONAL INCOMPRESSIBLE FLOW

The equations can be written
dba/dt + u.Vo + ».Vu = 0 D
V.u=0 1o

in a region Q in R® with no normal flow across the boundary 8Q. Thses
allow vorticity to be generated by stretching as well as advected. The
kinetic energy is conserved. If the advection of the passive scalar 8 is
included in the model, so that

v8/dt + u.ve = 0, (1

then the potential vorticity ©.V0 is conserved following the motion.

These constraints on energy and potential vorticity do not guarantee
good behaviour of the system. The work of Chorin (1982), Ballard (13985),
and Vallis (1985), amongst others, all supports the idea that the
solutions can become singular through production of an infinite amount

of vorticity in a finite time. It has not been possible to prove this
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rigorously. The mechanism is believed to be the existence of
configurations of vorticity in which ©.Vu is proportional to %,
Equation (9) then behaves like the equation

dw/dt = o= 1z
whose solutions become infinite at time t=1. As discussed by Vallis,
this singularity corresponds to the scale collapse in three dimensional
turbulence which allows viscous dissipation to balance the energy
production, however small the viscosity. It was shown by Ballard that,
in order to maintain energy conservation, the increase in vorticity
primarily occurs by the production of paired 'filaments' of opposite
signed vorticity, thus allowing the induced velocity to cancel. The
potential vorticity conservation does not constrain the flow at all
because VO along a filament tends to zero at the same rate as the
vorticity tends to infinity. The conservation is then destroyed by

viscosity.

This process involves a catastrophic scale collapse and cannot be
effectively simulated by Eulerian numerical methods because a sufficient
range of scales cannot be simulated accurately. The vortex stretching
term can be computed accurately while the resolution is sufficient, but
its effect on reducing the scale is grossly underestimated. The
solutions obtained are more like those for three-dimensional vorticity
advection, as illustrated by Ballard(1986). This difficulty is also
known in engineering calculations, where turbulent wakes in a flow are
often shorter than would be expected from computer simulations which
underestimate the vortex stretching and hence the dissipation. The
simulations using vortex methods by Chorin and Ballard are not entirely
reliable either, though they indicate the probable mechanism of scale

collapse,

The implications of this work for numerical methods is rather negative,
because an accurate simulation of this process is impossible. All that
can bé done is to insert the dissipation at the grid scale, allowing a
stable but inaccurate solution. A particular danger is that vorticity
will be advected rather than destroyed, leading to the presence of

apparently stable but spuriocus structure in the solution. In situations
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where coherent structure is observed in the atmosphere, vortex
stretching must be inhibited and accurate prediction may be possible. It
is therefore important to identify such situations, and to ensure that
the reasons why vortex stretching are inhibited are faithfully reflected

in the numerical approximation.

One such situation is the Beltrami flow. This has the velocity and the
vorticity parallel everywhere. In this case uxe is zero, and u.Vu can be
written as V{%u®). Hence dp/dt is zero and also du/dt, It is not known
how stable such configurations are. They are characterised by high
helicity wu.o . Lilly (1986) suggests that high helicity inhibits vortex
stretching sufficiently to produce enhanced predictability in practice,
while Kraichnan (1973) argues that helicity has little effect on the

structure of turbulence.

If helicity is important in real flows it should be reflected in the
parametrizations of turbulence in three-dimensional models. Since the
instability due to vortex stretching is likely to be under-represented,
it is likely to be possible to model long-lived helical structures. The
spurious structures which may be retained due to lack of vortex
stretching should be removed by the turbulence model. The helicity could
be used as an input to the turbulence model, reducing its effect when

the helicity is large.

Haynes and McIntyre(1887) have pointed out various conservation
properties that result from the fact that the vorticity is the curl of
another vector. This implies that care is needed in the choice of
numerical approximations if the vorticity is used as a variable. As yet
the detailed requirements have not bzen worked out. If the equations are
written as evolution equations for'the velocity rather than the
vorticity, then there is no difficulty since their results do not imply

any restriction on the velocity field.
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4. BALANCED EQUATIONS

4.1 The need to consider balanced models

The most important motions for weather forecasting can be regarded as
balanced in some sense, since the observed extra-tropical flow outside
the boundary layer 1s close to geostrophic and high frequency solutions
anywhere are not relevant. Recent work on'balance, Cullen et al. (1887,
illustrates that a wide variety of flows can be described by a balanced
model, 1including those where convection is important. It is unlikely,
however, that a single definition of balance can cover all flows of
interest, When designing numerical methods for a primitive equation
model to be used in operational forecasting, it is necessary to ensure
that the numerical model contains balanced subsystems which are
accurate models of the equivalent continuous subsystems. It is less
important to integrate meodel gravity waves accurately since only a small
part of the atmospheric gravity wave spectrum can be resolved and the

mechanisms which force the waves cannot be well represented.

There is no general agreement as to what definition of balance is most
useful. If the concept is restricted to the elimination of high
frequencies, then it can only be defined for smooth vertical structures,
Browning and Kreiss (18986). Normal mode initialisation is usually only
applied to smooth vertical structures and is not used to eliminate
internal gravity waves with large vertical wavenumbef. The semi-
geostrophic definition,Cullen and Norbury (1986),allows complete removal
of gravity waves, as do the nonlinear balanced equations reviewed by
Gent and McWilliams (1983 The implications of a variety of
definitions for numerical methods is therefore described. In this
'sectibn we consider integration schemes for pure balanced models, and
then in section 5 discuss the implications for primitive equation

models,

4,2 Quasi-geostrophic models

First consider the barotropic vorticity equation with variable Coriolis

parameter:
d/dt + u.Vo + Bv = 0 . (12>
V.u = 0. 13
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In section 2 we discussed the implication that vorticity is simply
rearranged by the advection term. A given smooth vorticity field induces
a smooth and bounded velocity, and therefore Bv is also smooth and
bounded. Though the vorticity will no longer be bounded by its initial
values, its rate of growth is restricted, This restriction will be well
approximated if the numerical approximation to the advection term

satisfies the rearrangement property discussed in section 2.1.

Now consider three-dimensional quasi-geostrophic flow. The equations can
be written, following the notation of Hoskins (1975) and Gent and
McWilliams (1983):

oug/dt + uy.Vuy, + dp/dx — fov -Byv, = (14
dv /0t + ug. Vv, + dp/dy + fou HByuy = (15)
0/0t + u,. V8 + wdB¢/dz =0 (16)
fu, + op/oy = 0 17)
fvg — op/dx = 0 ‘ (18
g6/8, — op/dz = 0O (19)
du/dox + ov/dy + dw/dz = 0. 20

The equations are to be solved in a closed region Q in R® with
coordinates (x,y,z). The boundary conditions will be discussed later. 8
is the buoyancy and 69(z) a reference profile. The Coriolis parameter is
(fo + By) where By«f,. In the oceanic context z is a height and p a
pressure, for a Boussinesq atmosphere z is a function of pressure and p

is a geopotential. These equations give a potential vorticity equation:

g = og + £08/dz/(269/dz) - By 2n
Oy = DVL/0X — dug/dy 22)
dq/dt + u,.Vq = 0. " (23)

q can be written in terms of p as:
q = 0/0x(f~70p/dx) + D/dy(f~'dp/dy) + (f8,/8)02p/dz=/(d6°/dZ)
- By. 24

Bennett and Kloeden(1981) proved existence and uniqueness for two
versions of these equations. The proof depends on recognising that
potential vorticity q is simply rearranged by the geostrophic wind, and
the geostrophic wind is derived from q by solving the Poisson equation

(24) for p. 6 is then determined from (19) and the total velocity
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components (u,v,w) need never be calculated though they can be diagnosed
from (15), (14), and (16) respectively. Boundary conditions are
required to allow (24) to be solved. A sufficient set are to- specify
either the normal derivative dp/dn or p on the boundaries. As discussed
by Bennett and Kloeden, care is needed in specifying a consistent set,

but this aspect is not directly relevant to numerical methods for global

primitive equation models.

The key property for numerical methods is again the rearrangement
property for g, and the good behaviour of y, derived from it by solving
(24). The natural numerical method would be to use q as a primary
variable. Schemes for advecting it should be selected for their
rearrangement properties as discussed in section 2.1. In a finite
difference scheme, it is natural to hold q and p at the same gridpoints.
The geostrophic wind components are then held on the Arakawa 'D' grid,
Haltiner and Williamé (1980). The potential temperature is staggered in
the vertical from the winds as suggested by Charney and Phillips (1953).
q and p are held either at boundary points where p is specified or half
a gridlength away when dp/dn is specified. If finite element methods are
used it is natural to use the same basis functions for q and p, If the
advection of q is written in the Jacobian form, conservation of the

integrals of q and g® then follows directly because of the properties of
the Galerkin method.

4,3 Semi-geostrophic models

The equations are:

duy/ot + u.Vuy + op/ox - fv = (25)
Ovy,/0t + u.Vvy + dp/dy + fu = 0 269
08/dt + u.Ve = 0 27
u= (uv,w, ' (28>

together with (17) to (20). The equations are to be solved in a closed
region Q in R® with no normal flow through the boundary. Existence and
uniqueness of solutions to a finite-dimensional approximation to this

preblem were proved by Cullen and Purser (1984).
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The key step in the theory for these equations is the method of
constructing u. This is done for constant f by seeking a volume-
preserving rearrangement of 9, (uy,~fy), and (v +fx) which is consistent
with the geostrophic and hydrostatic relations. Cullen and Purser prove

that there is a unique such rearrangement which.has non-negative

potential vorticity.

In a finite difference model, Cullen(1987) showed that the appropriate
arrangement of variables is the same ‘as the quasi-geostrophic model for
Uy, V4 and 8. The total wind components are held on the 'C' grid with w
staggered in the vertical from u and v. wu is then at the same points as
Vg, V at the same points as uy and 8 at the same points as w. The
schemes used to advect ug, v, and 6 should satisfy the rearrangement
property. If a Galerkin finite element method is used the correct choice
of approximating functions is difficult. The horizontal part of the
total velocity u derived from the implicit calculation has beth
rotational and divergent components, so that if the streamfunction and
velocity potential are used as variables, they have to use different
node-points. If the velocity components are used, they also have to be

approximated using different basis functions. Either choice presents

difficulties on an irregular mesh.

The finite difference implementation is described in Cullen(1887). Since
the true solution may be discontinuous, it is necessary to iterate
towards the required value of u. Because the desired rearrangement is
unique, this iteration is guaranteed to converge to it provided that the
numerical method satisfies the rearrangement property and the potential
vorticity is not allowed to become negative. If negative potential

vorticity is generated, an adjustment which satisfies the rearrangement

property must be carried out.

4.4 Nonlinear balance equation models

There are a number of versions of these. We select the BE model of Gent
and McWilliams(1983) for illustration. The equations are (17) to (20
and (27) to (28) together with:

V. (V) + 2Ty, p,0 = Ve 29

199



D/Dt(£+V2y) + (f+V2y)V=y + Vw.Vy, = 0. (30
The choice of boundary conditions is not straightforward and is
discussed by Gent and McWilliams. y and y are the streamfuction and

velocity potential for the horizontal velocity.

The structure of the equations differs slightly from the semi-

geostrophic in that only the velocity potential has to be predicted
implicitly from an omega equation.The streamfuction can be stepped
forward explicitly. An ellipticity condition is required to allow a
solution to be found. There is as yet no existence proof for these
equations. However, both 8 and VZy are advected, and the resulting

rearrangement property would be an important element of any proof.

The choice of staggering for a finite difference model or of basis
functions for a finite element model is easier than for the semi-
geostrophic case. The streamfunction, geopotential, and velocity
potential should be defined at the same points. The Jacobian form can be
used for the advection by the rotational wind to ensure conservation of

first and second moments of V2y. The rearrangement property for 8 should

also be preserved.

4.5 Nonlinear normal-mode initialisation and the bounded derivative

equations

Many primitive equation models are initialised by the normal mode

method. This is usually only applied to those vertical modes whose
associated gravity wave frequencies are large compared with those
associated with advection. This procedure can only be used to define a
balanced model if the integration scheme uses the normal modes, as does
that of Daley(1980).

Temperton(1986) has shown that similar behaviour can be obtained from a
scheme which does not use the normal modes directly.This approach which
can be used as the basis of an integration scheme using finite
difference or finite element methods. Another such scheme is the
bounded derivative method of Browning and Kreiss (1986). They prove that

the requirement that all fields evolve on the advective timescale or
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slower can be used to give a definition of balance for smooth vertical
structures. The exclusion of gravity waves with large vertical
wavenumber cannot be justified by this method. The resulting reduced
systems of equations describing balance have similarities in structure
to the nonlinear balance equation, so that the implications for

numerical methods are like those discussed in section 4.4.

5. BALANCED SOLUTIONS OF PRIMITIVE EQUATION MODELS

The primitive hydrostatic equations in the notation of section 4 are
(19) to (207, (27) to (28) and:

bu/Dt + dp/dx - fv =0 31D

Dv/Dt + dp/dy + fu = 0. (32)
The non—hydrostatic equations replace (19) by

Dw/Dt + op/dz - gb/8, = O. 33
The Boussinesq approximation can be withdrawn by replacing (20) by

du/ox + dv/dy + d{r(z)w)/dz = 0, ‘ 34
where r is a knbwn function of z.The lower boundary condition is:

W= dz,/0t + u,.Vz, at z=zg (35

DZu/Ot + Uy, V2zy = - H Qu/dx + dv/dy) dz. (36)

w 1s zero at the upper boundary corresponding to zero pressure.

There is a close analogy between solving the primitive equations by
semi—-implicit methods and solving balanced equations. The standard semi-
implicit method uses the pressure gradient terms and the vertical

advection of 8 at the new time level. The procedure can be simply
illustrated:

uttat + At (dp/dx)tAT = At 37
vErat 4+ At (dp/dy)tret = Bt (38)
WAt + At (dp/dz - gB/8y)tret = C* 39
gr+at + Atwt+Atd8/dz = D*. (40’

Equations (34) to (36) are also applied at time t+At. Substituting (40)
into (39) to eliminate 6 gives

op/dztret + Atwrrert(l - (g/8,)08/dz) = E*, 41)
Eliminating p between (37) and (41) and between (38) and (41) gives
equations for velocities at time t+At of the form

pu/dz + At2(Fow/dx + Gw) = H , 42)
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ov/dz + At*(Idw/dy + Jw) = K. (43)
Use of (34) to eliminate u and v gives

“0F(r(2)w)/dz= + At2[d/dx(FOw/dx + Gw) + /by (Iow/dy + Jw)] = L. (44)
This is an elliptic equation for w of a similar form to an omega
equation. When used in primitive equation models it is usual to replace
068/dz in equation (41) by a reference value independent of x and y. This
removes the terms denoted G and J in (41) and allows the equations to be
decomposed into two-dimensional equations when the vertical derivative
is approximated by finite differences. The nonlinear balance equation of
section 4.4 is obtained by removing the time derivative from equation
(33) and the divergence of equations (31) and (32). This removes the
first term in (44) and alters the form of F, G, I and J; also reducing
the equation to a two-dimensional equation:

D/OX (F=dw/dx + GEw) + o/by (I=dw/dy + J=w) = L, (45>
Equation (45) can be considered as an approximation to the omega
equation derived froh the nonlinear balance equation in which the most

rapidly varying terms are approximated at time t+At and the rest at time
t.

If the balanced part of the flow is to be well treated by the primitive
equation model, it is desirable that at least all the terms on the left
hand side of (45) should be treated implicitly, giving a variable
coefficient elliptic equation. The approximation should be chosen so
that the regularity properties implied by (45) are preserved. This means
that the streamfunction, velocity potential and geopotential should all
be held at the same points or approximated by the same finite element
basis. There is no ideal staggering if velocity components are used as
variables. The Arakawa E grid appears to satisfy the requirement.
However, if an approximation to (45) is generated from this staggering,
the Laplacian operator in it is not approximated using the nearest

gridpoints. This allows checkerboard instabilities to develop.

A further complication is the ellipticity condition, If this is
violated, then the balanced omega equation cannot be solved.The ‘
primitive equation form, equation (44), can be solved. The actual flow

will then be unbalanced and may be difficult to treat properly because
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of limited resolution. For instance, in the semi-geostrophic case, the
ellipticity condition can be stated as requiring non-negative potential
vorticity. Regions violating this condition can be generated by latent
heat release. The real flow then contains overturning motions including
a lot of small scale activity. It is arguable that such situations
should be excluded by a parametrization scheme even when the primitive
equations are integrated. Cullen et al. (1987) show an example of a
forecast generating ever increasing vertical velocitles as reselution is

increased when the potential vorticiiy is negative.

The elliptic equation (45) generates vertical motions which are roughly
inversely proportional to th static stability. Considerable increases in
accuracy might be possible if the moist static stabilify were used in
(45) when appropriate. This would achieve a closer coupling between
moist effects and the rest of the dynamics, particularly in rapid
cyclogenesis. If this is done all saturated regions of negative moist

potential vorticity must be removed by a parametrization.

6. CONCLUSIONS
The study of the properties of the partial differential equations
presented here gives conditions for nonlinear stabilify of integration
schemes but only limited information about accuracy. Nonlinear stability
requires:

* The rearrangement property

. Correct choice of approximating functions or grid staggering for
different variables.
The rearrangement property cannot be satisfied exactly by a conventional
scheme, but can be approximated by

. Conserving moments .

’ Accurate upstream differencing

. Reduction of truncation error generally
Research 1s needed into which schemes are best in this respect. This can
be done by calculating the evolution of a number of the moments in
standard advection tests.

The best positioning of variables appears to be to have the

vorticity, divergence and geopotential at the same points. This is
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normal in spectral and finite element models. There is no completely
satisfactory arrangement if velocity components are approximated,
perhaps explaining why there is disagreement about which scheme is best.
Potential temperature should be staggered in the vertical from the
geopofential, as has been suggested many times but rarely implemented.
An alternative strategy is to filter all grid-scale information.
However, it has never been proved that this is sufficient to ensure
nonlinear stability.

Accurate solution of the balanced part of the flow requires solution
of a variable coefficient elliptic equation, conventional semi-implicit
methods solve a constant coefficient equation. There may be advantages
in going to a more fully implicit approach, requiring development of
three-dimensional variable coefficient elliptic solvers. Such methods
should use the moist rather than the dry static stability in saturated

regions of ascent.
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