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1. INTRODUCTION

One of the weaknesses of current global numerical weather prediction models is
that the horizontal resolution is too coarse for the representation of the
local weather. For example, the half wavelength of the shortest wave
represented in the operational T106 ECMWF model is 190 km; even at truncation
7159, the finest resolution currently possible in research mode at ECMWF, it
is still 125 km. On the other hand, limited area models allow the treatment
of shorter waves but they present problems linked with the treatment of the

lateral boundary conditions.

As the sphere itself is a limited area, people have been looking for a long
time for solutions which combine the advantages of the above two approaches.
One obvious way in a grid point model is to have a variable mesh with a
sufficient concentration of grid points in the area of interest and lower

resolution outside, though still enough for resolving the synoptic waves.

The difficulty with such a solution is thaﬁ, due to the variation of
resolution, reflection and refraction of waves occurs. At a more fundamental
level, the local interactions are no longer isotropic: the derivative in one

direction and in another one do not involve the same scales.

Ten or so years ago, F. Schmidt (1977) proposed a clean solution to define a

global variable mesh model with local isotropic interactions. One defines a

transformation from the earth to another sphefe and discretizes the equations
on the latter sphere. If the transformation is conformal {angle~preserving)

then the local interactions are effectively isotropic. He proposed a

transformation which gives an area of concentration, and one of dilation at
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the antipode. It is important to realize here that what happens, after this
transform, to classical shallow water (or primitive) equations is, butvfor a
few technical details, the mere introduction of a local map factor with the
associated change of wind variables. Anybody having worked with models on a
polar stereographic projection is of course familiar with this presentation
and should feel at ease with the use of this transformation, provided he
accepts to think in terms of the transformed earth (see example figure 1), a
representation no more and no less deforming than the usual polar

stereographic projection but less customary, up to now.

Once the transformation is defined, it is possible to use either isotropic
spectral or grid-point discretizations on the transformed sphere. However the
method seems particularly suitable for the spectral discretization since an
isotropic discretization on the transformed sphere is achieved by the choice

of a triangular truncation.

In section 2 we prove the uniqueness of the transformation introduced by
Schmidt using differential geometry (it is repeated with classical geometry in
Appendix A for readers with a different taste). In section 3 we present the
implementation in a shallow water equation model with semi implicit time
integration scheme and non linear normal mode initialization. Numerical
results in section 4 demonstrate the feasibility of the method and application

in the operational and research context are discussed in section 5.

2. THE TRANSFORMATION

2.1 The problem
Let us consider a mapping £ of the sphere Q of radius 1 defined by:

(A',u") = £ (A, 1) (2.1)
where | is the sine of the latitude, A the longitude and the prime denote the

system of coordinates on the mapped sphere. As noted by Schmidt (1977), the

shallow~water equations can be expfessed in terms of three differential

operators:
BB TEnat O g (2.2)
= = o ((m) )t g_i%
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where V is the first order differential operator over the sphere ) and A and B
two scalar fields. "." denotes the scalar product of two horizontal vectors
and "x" the two dimensional vectorial product (vertical component of the three
dimensional vectorial product of two horizontal vectors). If £ is a conformal
mapping (i.e. fulfils the Cauchy-Riemann condition as expressed by Schmidt,
1977), then we have the remarkable property:

ZA X ZB = Z'A' X Z‘B' « FY(A', ")

VA - B = v'a' . ¥'B' . F'(A', ") (2.3)

v2a = v'2a < F'(A", ")
where V' is the first order differential operator with respect to the
transformed coordinates (A',u') and A' and B' the fields A and B considered as
functions of (A',u'). The so called mapping factor, F'(A',u') is (with the
choice of (A,u) as the systém of coordinates), the determinant of the plane

Jacobian matrix of the mapping £:

B By’ 3y ap |7!
ox  9A aA' A’
F'(A",u") = = (2.4)
9A" au' 9A du
ay o au' ou'

The fundamental remark which makes feasible the spectral method using a
collocation grid with no aliasing efrors for the shallow-water equations is
that if at a given instant, the vorticity, divergence and geopotential are
expressed in finite series of spherical harmonics, then the tendencies of
those fields are also expressed in finite series of spherical harmonics. Due
to the quadratic terms, the maximum degree of the tendencies is twice that of

the fields (Jarraud and Simmons, 1983).

This property is conserved in the shallow-water equations transformed by a
conformal mapping (the fields and the Coriolis parameter being expressed in
finite series of spherical harmonics defined over the mapped sphere) if and
only if the function F'(A',u') has a decomposition in a finite set of
spherical harmonics of the mapped sphere. The mapping is then said to be
spectral. Furthermore, the lower the order of this decomposition, the less

additional degrees of freedom the collocation grid will require.
In the following, we shall identify all the conformal mapping of the sphere

using a classical result of holomorphic functions, and then identify all the

spectral mappings.
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where V is the first order differential operator over the sphere Q and A and B
two scalar fields. "." denotes the scalar product of two horizontal vectors
and "x" the two dimensional vectorial product (vertical component of the three
dimensional vectorial product of two horizontal vectors). If £ is a conformal
mapping (i.e. fulfils the Cauchy-Riemann condition as expressed by Schmidt,
1977), then we have the remarkable property:

Vax V8= V'A" x V'B' . F'(A',u")

VA - B = V'A' « V'B'" . F'(A",u") (2.3)

v2a =v'2na’ < FU(AY, ")
where Z' is the first order differential operator with respect to the
transformed coordinates (A',y') and A' and B' the fields A and B considered as
functions of (A',u'). The so called mapping factor, F'(A',u') is (with the
choice of (A,uy) as the systém of coordinates), the determinant of the plane

Jacobian matrix of the mapping £:

. DAY A 3u (7!
X 9A 3A' 9A!
F'(A',u") = = (2.4)
8" u' 9 3u
dy  du au' o'

The fundamental remark which makes feasible the spectral method using a
collocation grid with no aliasing efrors for the shallow-water equations is
that if at a given instant, the vorticity, divergence and geopotential are
expressed in finite series of spherical harmonics, then the tendencies of
those fields are also expressed in finite series of spherical harmonics. Due
to the quadratic terms, the maximum degree of the tendencies is twice that of

the fields (Jarraud and Simmons, 1983).

This property is conserved in the shallow-water equations transformed by a
conformal mapping (the fields and the Coriolis parameter being expressed in
finite series of spherical harmonics defined over the mapped sphere) if and
only if the function F'(A',u') has a decomposition in a finite set of
spherical harmonics of the mapped sphere. The mapping is then said to be
spectral. Furthermore, the lower the order of this decomposition, the less

additional degrees of freedom the collocation grid will require.
In the following, we shall identify all the conformal mapping of the sphere

using a classical result of holomorphic functions, and then identify all the

spectral mappings.
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2.2 The conformal mappings of the sphere

We call P' the complex plane P to which we add the infinite point. The sphere
is then classically identified to P' using the polar stereographic projection
(P' is called the Riemann sphere). Then a classical result is that all the
conformal mappings of P' are given by the homographic transformations (also
called bilinear, linear fractional or Md&bius transformations) (Cartan, 1961),
see also (saff and Snider, 1976) for an English reference. We consider only
transformations which preserve also the sign of the angle, we have thus
excluded the inversion (symmetry with respect to a plane containing a great
circle). There is no loss of generality since the transformations which
preserve the angle but not the sign are either holomorphic in z or in its
conjugate z. The homographic transformations have the form:

_oz + B8

h(z) = Yz + §

(z , a8 = By % 0) (2.5)

which corresponds to six degrees of freedom.

We can easily see that this transformation has two fixed points (or one
double). We make a rotation of the sphere in such a way that the southern
pole (the infinite point in P') is invariant in the transformation. Since all
the conformal transformations of the complex plan P are the similarities, h
reduces to the form:

h(z) = c(z + be' ™) (2.6)

The transformation z + z elT is a rotation around the polar axis, so we can
assume with no loss of generality that ¢ is real positive. h(z) = ¢ z is the
magnification of ratio ¢ and centre the origin (northern pole) and h(z) =

it . . . i
z+be T is the translation of wvector be T,

All the conformal mappings of the sphere { can be decomposed into the product
of rotations (the three Euler angles corresponds to three degrees of freedom)
and of two elementary transformations of the Riemann sphere P' (one degree of
freedom for the magnification and two for the translation). The rotations do
not change the resolution over the sphere and their associated mapping factor

is constant and equal to one.
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The magnification is the transformation identified by Schmidt, 1977, for which
he proved that it is spectral. We shall prove that the translations are

spectral.

2.3 The translations are spectral

We consider the translation h(z) = z + be' T where T is assumed equal to zero
for convenience (translation parallel to the real axis). We:then express the

associated mapping £ of the sphere Q: (A',p') = £( A, u). (See Figure 2).

Let (r,8) be the polar coordinates in the complex plane. We have:

_ 4-x? - 2 - 4 1=
W= o2 =6 ré = 41+u (2.7)

The transformation is then:

(A, ) » rele +rcosf + b + irsin® +» (A',p")

Fig. 2 The transformation associated to a translation in the complex plane.

(A',u'") are then related to (X, p) by:

tan(A') = 2 ¥1-y sin)
2¥1-p cos A + bY1+y . (2.8)
g o= BuT b2(1+p) - 4bV/1-uZ cos)

8 + b2(1+yu) + 4b¥1-pZ cosi
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The inverse transform is obtained from a translation of (-b), so we have:
2 Y1=u' sinA'
2 /1-p' cosA' - byY1+y'

tan(A) =

(2.9)
_8 p' = b2 (1+u") + 4bvV1-y'2 cosA’
8 + b2(14p') = 4bvV1-yu'2 cos)!

u

The partial derivatives involved in the mapping. factor are found to be:

/1+u’
TR (2 - b cosr' ¥ 1=u")

ou’ (8 - 4b V/1-"2 cosA' + b2 (1+u'))2
u - b (p'+1) ¥1=-u'2 sin)’
BN (8-4b V1-u"Z cosA' + b2 (1+u'))2
(2.10)
A _ o, [(201-u") = b cos)' V1-y'?)
oA 4(1-u") - 4bV/1-1'2 cosA' + b2(1+pu")
A - 2 b sin A'
ou’ V1-u'Z (4(1-p") - 4b/T=1" 2 cosA' + b2(1+p') )

and the mapping factor is then:

2
_ (8 - 4b/1-1"Z cosA' + b2(1+y") )
64

F'(A',u") (2.11)

If the translation is of vector be'' where b and T are real numbers, by
performing a rotation of the cartesian referential of angle T and applying the
previous result, we have the mapping factor:

e 2
(8 = 4bV1-u'2 cos(A'=1) + b2(1+p") )
64

F'(A",u") (2.12)

The mapping factor is the square of a sum of spherical harmonics of degree 0

and 1, defined over the transformed sphere so it is of degree 2, so the

translations are spectral.

2.4 The homotheties are spectral

We study the mappings associated to the transformations £(z) = cz of the

Riemann sphere P' where c is real.” The transformation is:

(A, ) » rele > crele + (A", ")
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we have:
A' = 8 = ) v (2.13)

4 - c2r?2  1-¢? + u(1+c?)
4 + c2r? 1+c2 + p(1-c2)

' =

the inverse transform is obtained for c‘l, so we have:

c2-1 + p'(1+c?)

H = 1+c2 + ul(c2_1) (2.14)
the partial derivatives are then:

A

! !

A

— =0

'

o _ . (2.15)
akl

w 4 c?

o' (14c2 + p'(c2-1))2

and the mapping factor:

(1+c2 + p'(c?-1))2
4 c?

F'(A",¢") = (2.16)

It is the square of a Legendre polynomial of degree 1, so in terms of

spherical harmonics, its degree is 2.

2.5 The transformation z -+ c(z+belT) is spectral and of degree 2

This transformation is the composition of a homothetie H and a translation T.

We have:

T H
(A,u) > (A", p") > (A",u")
The mapping factor is the product of the mapping factors of T and H. We
have:

(8 - 4bV1-3'2 cos(A'=T) + b2(1+p") )2  (1+c2 + y"(c?-1))2
64 * 4 c2

F'()\",U") =

(4(1+c2 + p"(c2-1)) = 4 be/1=3"2 cos(\"-1) + b2c2(1+y"))?
64 c?2

(2.17)

It is the square of a spherical harmonic of degree 1, its degree is then 2.

We have proved that all the conformal mappings of the sphere are spectral and
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of degree 2. A spectral model truncated at order N on the mapped sphere
requires the collocation grid of an homogeneous model truncated at order N+2
to prevent the aliasing errors. Consequently, it is an economical way to
build a clean variable resolution model. However, since the corresponding
measure over the sphere is only at degree 2, we are very far from being able
to approximate all the possible local increase of resolution, in particular we
can easily see from the fact that the measure is the square of a spherical
harmonic of degree 1 thét there does not exist more than one area of

concentration and one area of dilatation.

2.6 Interpretation of the transformation z » c(z+belT)

Let us define Q the point of the mapped sphere of colatitude ¢ and longitude
T

4(c?-1) + b2c2

V(4(c?-1) + b2c?)2 + 16 bZc? (2.18)

- 4bc

V(4(cZ-1) + b%c?)2 + 16 b?c?

with cos ¢ =

sin ¢

If M is the point of coordinate (u",A") (u"=cos¢") then

: (a2-1) al+1.2
1 " " - ~-~ i
FYOA", ™) ( o cos Yy + 2a ) (2.19)

where vy is the arc QM and

« = V(4(c?-1)+b2c2)2 + 16 b2c? + 4(1+c?) + b2c2
8 ¢

By identification of (2.19) and (2.16), the transformation considered appears
as an homothetie in the complex plane tangent to the mapped sphere at the
point Q; it is the transformation introduced by Schmidt, the new feature here
is that the pole of the collocation grid of the model has no longer to be at
the pole of dilatation. That has one advantage: the problems introduced by
the behaviour of the subgrid parametrization in the vicinity of the pole of
the collocation grid (where the resolution of the physics is far more
important than the resolution of the dynamics) would be removed to the
periphery of the area of interest while in the centre of the area the
resolution of the collocation grid would be quite homogeneous (assuming the
pole of dilatation is put on the pseudo-equator). The above mentioned
problems have to do more with the interpretation of parametrization output

(e.g. rainfall fluxes, etc...) than with the interaction physics <> dynamics;
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but in any case a quasi regular and guasi orthogonal grid on the real sphere
in the centre of the area of interest appears to be a wishable feature for any

operational post-processing package.

2.7 Particular cases

Then b=0 and we have the transformation introduced by F. Schmidt and studied

in Section 2.4.

The colatitude ¢ of Q is then equal to i-%
cos ¢ = 0
sin ¢ =1, b <0
sin ¢ = -1, b > 0

+ -
and o = l——E—l—F (0 < c < 1)

This last case is of great practical interest because as already mentioned,
the collocation grid is homogeneous in the middle of the area of maximum of

resolution.

2.8 Conclusion

We have proved in this section that the only non trivial conformal
transformations of the sphere are the homotheties in a given tangent plane,
i.e. the transformations introduced by F. Schmidt. For a different, less
algebraic and more geometric expression of this proof see Appendix A. In
addition, we have also shown that the pole of the collocation grid has no

longer to be the pole of maximum of resolution.

We have only studied the conformal transformations for two reasons. The first
is that the shallow water equations on the transformed sphere are still very
simple, the second comes from the fact that there is a priori no reasons to
consider local interactions which are not isotropic. Nevertheless it is
likely that some quasi conformal transformation are also spectral in the sense

defined by F. Schmidt.
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3. IMPLEMENTATION IN A SHALLOW-WATER EQUATIONS MODEL

3.1 The shallow-water equations over the mapped sphere

The shallow water equations can be expressed in terms of a few differential

operators
%f-: Z(g + f) x Z A_1E f Z.((g + £) z A—1q)
an -1 -1 1
- WE+E) x YA n+ L((E+£) YA E)-—7A(4+K (3.1)
®owxyae- ey

with X = a2[y A €. Y4 g+ VA 'n. vAa v A Exy A

where £ is the relative vorticity, n the divergence, ¢ the geopotential, a the
radius of the earth, f the planetary vorticity, and the notations for the
differential operators are the same as in section 2, A being the Laplacian
operator and A~! its inverse. As a consequence of the equalities (2.3), we

have

V.(AVB) = V'.(A' V' B') F' (A', u')

-1 -1

A (3.2)
A () Al (ET)

On the mapped sphere, the shallow-water equations take the following form :

» -1 -1
V'(aF' + £) x V'A' a- V'.((aF' +£) 7'A B

-1 - ' '
V(' +£) x VA B+ V.((aF' +£) VA B -% (¢ + F'K')

¥l %lz |z

[(Vox U8 o= (s ¥ a7 B)IE" (3.3)

with the same formal expression for X' as for K.

where o = and B = - .

Originally, Schmidt chose (¢/F') as a prognostic variable. We think that the

choice of ¢ as a prognostic variable is better for the following reason : the
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geostrophic relation on the f-plane is ¢ = f¢ where ¢ is the stream function.
It means that the geopotential and the stream function should have the same
representation in the area of maximum of resolution, which is not achieved by

the choice made by Schmidt.

3.2 Implementation in an explicit model

The transformation of a uniform resolution shallow-water equations model
organized as the horizontal part of the ECMWF model into a non uniform one
requires only three modifications in the computation on the collocation grid:
the relative vorticity, the kinetic energy and the tendency of the
geopotential, where the mapping factor is involved explicitly. In addition,
the planetary vorticity has to be precomputed for each point of the
collocation grid since its expression is no longer simple. The last technical
modification concerns the number of points of the collocation grid NEW in the
East-West direction and NNS in the North South direction. The inequalities
between NEW and NNS and the degree N of the truncation are:

NEW -1 > 3N + 2

2NNS -1 < 3N + 2
instead of

NEW -1 > 3N

2NNS -1 3 3N
for an homogeneous model. When the number of points in East-West is a
multiple of 3, there is no cost penalty. In addition, there are also some
modifications to be included in the pre-processing and in the post-processing
of the model to take into account that the model variables are defined on a

transformed sphere.

3.3 The semi-implicit scheme

Let us consider the pseudo-divergence and geopotential equations written in

the following symbolic form, the temporal scheme being a leap-frog scheme:

[

B(t+At)
$p(t+AL)

B(t-At) + 2 At FB (3.4)

1

d(t=At) + 2 At F¢

where F_ and F are the explicit tendencies of the model. We follow Robert

B
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et al. (1972) to implement an implicit treatment of the external gravity wave.
We obtain the following system of equation for the pseudo-divergence and the

geopotential at time t+At:

B{t+At) Blt-At) + 2 At[FB + —;—a—z A'[24(t) - ¢(t+At) = ¢(t-At)]]
’ (3.5a)
1

d(t—-At) + 2 Ac[Fo + E‘F' [2B(t) = B(t+At) - B(t-At)]]

i

d(t+At)

which reduces to the two Helmholtz equations where only one has to be solved:

_ a2y
a

9=
¢-A—:2'QF' AY (¢) =b¢

with bn and b¢ being functions of the known terms of 3.5a.

B A' (F'B) = bn (3.5b)

The problem is that the operators involved in the left hand side of 3.5b are
no longer diagonal in spectral space (they admit the spherical harmonics of
the geographical sphere as eigenvectors and not those of the mapped sphere).
We have implemented this method in the case of a stretching at the northern
pole, in which case the corresponding matrix of the operator is
block-diagonal, each block corresponding to a given zonal wave number m being
part diagonal. However it is not, as far as we know, so easy to achieve this
if the pole of stretching is not the pole of the collocation grid. We have

then looked for a simple solution:

The continuous equation of the external gravity wave is:

on _ _ 1
ot a? Ad

(3.6a)
8 _ _ =

and in the transform coordinates, it becomes:

38 .
Az b
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(3.6b)

This last equation is formally the same as a gravity wave equation with a
variable height EF'. The maximum phase speed is obtained for the maximum
value of the mapping factor, and we can implement the classical semi-implicit
scheme but with an equivalent geopotential (E max (F')). From the physical
point of view, it means that we treat implicitly the external mode where the
resolution is maximum and less implicitly elsewhere. However;, in this latter

case, the CFL criterion is less critical.
The important result is that this approach works and that the scheme is as
stable as with the fully implicit treatment of the external gravity wave. No

significant differences from the full scheme can be seen in the forecasts.

3.4 Non—-linear normal mode initialization

As for the semi-implicit scheme, in the general case we lose the separability

between the wave numbers n and m.

The important practical point we show is that the Machenhauer, 1977 scheme
implemented in the case of the pole of stretching at the northern pole still
works (see Appendix B). Thus any initialization methcd based on the same
definition of the slow manifold as for the Machenhauer algorithm will work.
Furthermore an implicit method which does not require the explicit
determination of the normal modes is conceptually more simple in the case of a
variable mesh model and solves the problem of the storage of the normal modes

(Temperton, 1985 or Sugi, 1986).

4. NUMERICAL RESULTS

The experiments described in this section have been performed using a
shallow-water equation model. The spatial discretisation uses the spectral
technique and is achieved over the transformed sphere. In all the following
experiments, the pole of stretching ahd the pole of the collocation (Gaussian)
grid are located at the northern pole of the geographical sphere. The
semi-implicit temporal scheme and the non linear normal-mode initialization

process described in section 3 are used.
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4.1 Meteorological results

We have performed a series of experiments using various values of the

stretching factor ¢ and of the degree N of the triangular truncation :
721, c=1, 2, 4
T42, c=1, 2
785, c=1

The corresponding curves of resolution are presented on figure 3. At first
sight, it seems that the area of maximum variation of resolution is quite
close to the pole of maximum resolution. However this is a representation on
the real sphere, unknown to our equations, while on the transformed sphere
(the one that matters) the curve would be symmetrical i.e. the area of
maximum change at the pseudo equator. We made six 24-hour forecasts starting
from 00Z, 86-12-03, 86-12-04... 86-12-08. Figures 4, 5, 6, 7 and 8 show the
average over thevsix cases of the mean differences between the forecast
produced by the configurations of the model T21c1, T21,c2, T21c4, T42c1, T42c2
and the isotropic T85 which is taken as reference. The initial condition of
each forecast is the operational ECMWF T106 analysis of vorticity, divergence
and geopotential projected on the set of basis function of the given
experiment and then followed by a non linear normal mode initialisation. The
standard deviations maps were very similar to the mgén maps for the matters we

shall discuss below.

The main result is that the T21c2 (Figure 5) forecast is closer to the T42c1
(Figure 7) than to the T21c¢c1 (Figure 4) in the northern hemisphere, which
means that the gain in resolution is effective: In particular the large
differences over the Rocky Mountains, the Aleutian area and the Caspian Sea
vanish. 1In the North of the Atlantic Ocean, the improvement is negligible
apart from the Hudson Bay where an important phase error has been removed. On
the other hand, the T42c2 has a quality comparable to the T21c1 in the
southern hemisphere: we lose resolution in the southern hemisphere but no more

than was expected from the theory. It is important to point out that it is
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not only the global quality which is the same but that even the local patterns
are very similar: e.g. South of the Atlantic Ocean, Tasmania, and South of the

Pacific Ocean.

We have only presented the results in terms of mean error. However, the root
mean square maps and also maps for each individual case lead to the same
conclusions. We have also made experiments on other dates (January 1987, May

1987 and June 1987) which confirm the above results.

We have made some further experiments.at higher resolution : T63, c=1,2,4;
7106, c=1,2; T133, c=1 and on other meteorological situations. The previous
results are confirmed. In particular as the resolution increaées, the shallow
water equations become less sensitive to resolution (the initial conditions do
not provide small-scale shocks) and the results of the different experiments
become quite identical in the northern hemisphere. The important consequence
is that the poor results of the T21c4d of the first set of experiments were not
coming from the existence of non uniform resolution but from a lack of
resolution in the southern part of the northern hemisphere, as can be seen on
figure 3. This result is consistent with the fact that truncation 21 is a

lower limit for a reasonable representation of synoptic scales.

These results are promising but they also have their limits. We have not
studied the interactions between the horizontal discretisation and either the
vertical one or the physical parametrisations. On the other hand we have not
included any forcing like orography whose impact will a priori be enhanced

with a better local resolution.

4.2 Numerical considerations

The scheme has been proved to be stable in long-term runs (200 days) with a
stretching factor in the range 1-4. For this, we used a Asselin (1972) time
filter with a coefficient equal to 0.01 and also a slight diffusion, half the
diffusion of the ECMWF T106 operational model. We have not investigated
higher values of stretching for this question of stability, but, éven if the
non liﬁear interaction are not described as in an isotropic model, there is a
priori no reason to have a problem since there are no aliasing errors arising

from the quadratic terms.
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Some early results with no normal mode initialisation at the beginning of the
forecast were found to be noisy in the area of maximum of resolution with
high stretching factors (4-10). Although the problem has been cured with the
introduction of the initialisation process, it was a strong indication that
the gravity waves were trapped in the area of maximum of resolution. To study
this problem, we integrated a degraded version of the model considering only
the linear gravity wave equation 3.6. As initial conditions, we used an
atmosphere at rest but with a geopotential field presenting a positive anomaly
at the northern pole. In the isotropic case, the solution ié analytic both in
the continuous and the discretized case, the power spectrum beihg unchanged
during the integration. In the stretched coordinate model, the equation is
still linear but with coefficients varying in space and the shape of the power
spectrum (with respect to the spherical harmonics of the mapped sphere) has no
longer to be conserved. Numerical integrations show that as the wave
propagates to the area of low resolution, the spectrum propagates to the high
values of n, and when it reaches the degree of the truhcation, it is

associated with reflections in the physical space.

Obviously, this may be a problem for the implementation of the method,

nevertheless we are optimistic for the following reasons :

i) The problem is of the same nature as in the grid point case (Staniforth

and Mitchell, 1978).

ii) Only waves propagating in the radial direction are concerned by this

problem.

iji) The problem is maximum in the area of maximum change in resolution (and
not the area of maximum resolution) and less important than in a limited

area model where a wall condition is imposed.

iv) Only the waves resolved in the area of maximum resolution and not in the

area of minimum resolution are concerned.
v) The local interactions being properly treated (the transformation is

conforﬁal), it is the boundary condition in spectral space imposed by

the limitation of the truncation which creates the problem. It is
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exactly of the same nature as the problem encountered in isotropic
models of resolution between 50 km and 200 km where a part of the
spectrum of the gravity waves is resolved but a more important part is

not resolved.

We have studied the reflection of waves due to the variable mesh but we have
not considered the possible problem of diffraction, which is minimized even if
not suppressed by the conformality of the transformation. Another feature
which has not been considered is the impact of the stretching on the stability
of nonlinear equilibrium, a candidate for that study being the behaviour of

modons in a vorticity equation model.

5. POTENTIAL FOR NUMERICAL WEATHER PREDICTION (NWP) APPLICATIONS

Extension of the techniques described in Section 4 to primitive-equation
models will obviously create no difficulty from the dynamical point of view
(The probleﬁ of parametrization schemes with a validity extending over a whole
range of horizontal resolutions will not be addressed here, despite our
realisation of its crucial importance for operational NWP applications of the
spectral transform technique). Thus it appears that the technique could be
used as a viable alternative to three types of non homogeneous NWP systems:
hemispheric models, nested systems starting from global (or hemispheric) and
finishing with one or more limited area models (LAM) and, more surprisingly

perhaps, LAM in stand-alone mode.

Before reviewing these three potential applications let us say soﬁething about
the time stepping algorithm. 1In dynamical semi-implicit or split-explicit
schemes the CFL condition will always be critical in the area of maximum
resolution for the real sphere (or, in other words, in the area of strongest
pseudo-winds on the mapped sphere). Thus the time step has to be chosen equal
to the one corresponding to an homogeneous model of truncation cN. This is,
in a certain sense, an unwelcome result: in areas of weak resolution (or weak
pseudo-winds) one will have to use a too short time step for the local
dynamics and thus pay in principle an unnecessary price for the flexibility of
use of the spectral transformed sphere. However if one is interested in the
results of the forecast only over a limited part of the earth the advocated
solution will still be cheaper by a factor of about 1/c¢ than the one of an

homogeneous global model. This gain is partly compensated by a loss of
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accuracy that should however, according to results of Section 4, be far less

important than the cost reduction.

But there is some hope that even the problem of the CFL dependency can be
alleviated or even suppressed in some cases. Semi-Lagrangian techniques in a
spectral model on the sphere are now more and more likely to become a reality
in the coming years (Ritchie, 1987). Then the choice of the time step would
depend oﬁ other considerations than the CFL criterion (physics, time
truncation errors ....) and one could imagine it to become independent of the
¢ factor if the latter is not too high (¢ < 2 ?) or at least that the time
step will not be the one dictated by the area of maximum resolution in case of
high values of c. This shows that there is a mutually reinforcing interest of
the two technical developments that spectral variable resolution models (SVRM)

and semi-Lagrangian time stepping techniques represent.

Another less obvious advantage of the spectral transform technique can also be
mentioned here: it allows, in purely spectral global problems, a strong
reduction of N for a given maximum resolution and therefore puts a further
delay to the time (in historical evolution) when the disadvantage of the N3
cost of Legendre transform will start being detrimental to spectral techniques
against finite difference of finite element ones. On the other hand N3 is not
an intrinsic property of the Legendre transform, there exist matrix

logsy?

multiplication algorithm whose asymptotic cost is N and further more we

have no proof that fast Legendre transforms do not exist.

5.1 SVRM as an alternative to hemispheric models

Hemispheric models are in fact global models (most of the time spectral ones)
for which one assumes that the Southern Hemisphere is the exact symmetric of
the Northern one. It is well known that, for forecasting in mid latitudes,
the influence of a "wrong" equatorial boundary condition progressively
deteriorates the quality of the forecasts, especially for the planetary ultra-
longwaves (Sommerville, 1980, Arpe and Dittman, 1987) and that
data-assimilation problems are paramount near the equator (Coiffier et al.,
1987). For most applications a global model with a resolution divided by

21/3

offers a more physical and as cost—effective solution as the hemispheric
model. But both these solutions are obviously superseded by a SVRM with polar

axisymmetry and a rather small stretching factor (1 < ¢ < ~ 1.5), the
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truncation being chosen to give the wanted local resolution at the latitude of
interest (for Southern Hemispheric purposes one should of course replace c by
1/c). We shall not go further in the description of the advantages of such a

gsolution since it was already done in the previous section.

5.2 SVRM as an alternative to nested systems

Nested systems (one-way or two-way interactive) are used in NWP to reach a
high spatial resolution over an area of special interest without having to pay
the price of such a resolution over the entire globe. Despite the use of
efficient boundary relaxation techniques (Davies, 1976) there are still
problems of brutal loss of informatioﬁ at the boundaries of the LAMs as well
as problems of inward propagating gravity waves forced in the vicinity of the
boundary by "physical" or orographic forcing. Such problems will have
automatic counterparts in a SVRM system but with a surely less damaging
intensity. Furthermore one SVRM means a single code while a nested system
starting with a spectral global or hemispheric model and ﬁinishing with a ILAM
means at least two codes with all the maintenance problems created by such a
duplication. Thus nested systems, where both the global and local forecasts
are of practical interest, may be replaced by one SVRM with intermediate
stretching factor (~ 2 < ¢ < ~ 3) provided, of course, that‘the latter <can be
used with a semi-Lagrangian time stepping (otherwise the'risekof the costs
starts being too detrimental). Needless to say, one has, in this case, to
make use of the rotation described in Section 2 in order to bring the maximum
of resolution (and not necessarily the pole of the new grid) on the domain of
interest. To give some order or magnitude we computed, merely as an example,
that the coupled systems Emeraude/Peridot (Spectral T79/LAM 95x95 35 Km mesh)
of the French Weather Service (DMN, Direction de la Meteorologie Nationale)
would be roughly equivalent for its dynamical resolutions to a T127/c=3 SVRM
that would have a similar cost if an increase of about 4.3 in the time step
could be obtained from quasi-Lagrangian techniques. The limit for cost
effectiveness is below that value of 4.3 since the SVRM will suppress most of
the problems associated with the LAM boundaries and since the "high resolution
area" will have a larger extension than the one of the LAM. It might roughly

be assumed to be between 2 and 3.

There is however one hidden drawback in the previous argumentation. The use

of the SVRM technigue would enforce the same vertical discretization for two
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quite different problems, namely global synoptic forecasting and local
mesoscale adaptation to local forcings. Operational practice shows that
differences in the vertical structures are a welcome advantage of nested
systems even if it causes some interpolation problems in the coupling. For
example Emeraude and Peridot both have 15 levels but the cheépest, non
degrading combination of both vertical grids would require 20 levels. This
brings back, in a rough rule of thumb, the semi-Lagrangian threshold of
efficiency around 3 if one also takes into account the increase in quality

that will anyhow result of getting a better vertical resolution.
Of course all these very quantitative arguments will have to be qualified by
clean experimental comparisons, with some a-priori edge given to the SVRM

solution as a bonus for its "simplified maintenance" aspect.

5.3 SVRM as an alternative to LAM

All the arguments of Section 5.2 were of pure dynamical nature, without
consideration of one of the disadvantages of the spectral technique: the
diminished realism of the orographical forcing, owing to the necessity of
exactly representing the orography in the truncated spectral space. It is
known that this is ﬁot a too serious drawback in large scale models, but when
going towards mesoscale forecasting the situation radically changes: the
emphasis is then put on local adaptation to orography for the wind forecast
and to the prediction of sensible weather for the thermodynamic variables (a

domain where Gibbs phenomena are obviously damaging).

The consequences are that either the resolution should be increased everywhere
(a costly solution) or that the stretching factor ¢ should become even bigger
than the values mentioned in 5.2 if one wishes to have a good mesoscale
forecasting application of SVRM. However in the latter case an increase of ¢
immediately creates (at equal costs) a degradation of the resolution at the
antipodes of the area of interest, degradation that might become annoying if

one also wishes to use the global forecast for general requirements.

One is therefore naturally lead to consider the application of SVRM as a
limited area forecasting tool, i.e. the values outside a given area of
interest being relaxed towards the results of a previous forecast performed by

the same model but with a reasonable stretching factor (see 5.1 and 5.2).

331



When considering this possibility the first intuition is generally to consider
that it will not be viable since the needed stretching factor for an efficient
use would create too much distortion inside the area of interest. However,
this is not the case, as will be shown below using an argumentation inspired

by that of Schmidt (1982).

Let us assume a circular domain of interest of radius R (on the real sphere) R
being expressed in radians. Once the point of maximum resolution has been put
at the centre of the area, we are seeking, for a constant truncation, which
stretching factor ¢ will be maximising the minimal resolution inside the area
of interest (i.e. on its edge). Such an optimum will obviously exist
(provided R < 7/2) since stretching will first uniformly increase the
regolution inside the circle of interest (as ¢ ~ 1) and ultimately lead to a
vanishing resolution at the edge (as ¢ + ). Let us see how this reads in

mathematical terms.

The stretching factor on the edge of the domain is

s = VF' = [(1+c2)+(1-c2) cos R]/2c
a ds _ 0 ai 2 _ 1+cos R
and == 0 gives c® = T————

and s = 1/ sin R

But this simply means that, however small R might be, the optimum is always

obtained when the edge of the area of interest is transformed as the equator

of the mapped sphere, since

1+cos R R

By - T
2 Arctan (J1—cos R tan 2) 5

This is one more remarkable result of the Schmidt transform that makes it
applicable to any "circular" LAM problem since the ratio r of the stretching
factors between the centre of the area and its edge always remains inferior to

tWo.

r = ¢1i99§—5 / (1/ sin R) = 1 + cos R
1-cos R
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In most applications R will be small so that r = 2 (see Figure 9). This
obviously reinforces the statement made at the beginning of 4.1 about the area
of maximum varying resolution, equivalent to the brutal edge of a coupled LAM
system but obviously far more satisfying in our case ("natura non fecit

saltus").

In summary, in LAM applications of SVRM there will always be half of the grid
points inside the area of interest and the other half outside it and there
will never be more than a doubling of the resolution when going from the edge
towards the centre of the area of interest. Furthermore, going back to the
orography problem mentioned earlier, fhe choice of the "edge-resolution" as
dynamically equivalent to the one of a classical LAM will give an improved
orographical definition over a good part of the domain, around its centre.

And the advantages of a spectral solution against a finite difference one will
partly compensate for the "waste" of half the degrees of freedom in the model
so that the solution will remain reasonably efficient, provided once again,
that a semi-Lagrangian improvement on the time step of the order of 3 can be
reached. This is not, in our mind, too detrimental a figure and we thus think
that a carefully balanced use of the options described in 5.1, 5.2 and 5.3
should be able to offer a cost effective alternative to any of todays existing

NWP systems.

6. CONCLUDING REMARKS

In this paper we have shown that the spectral conformal transform introduced
by Schmidt (1977) is the only non trivial one of its kind when going from
sphere to sphere. We also indicate that practical applications of this
technique should be thought in terms of classical spectral techniques applied
to the mapped sphere (rather than changing equations on the real sphere).
This, for instance, enables a dissociation between the areas éf maximum and

minimum resolution and the poles of the collocation grid.

The results of several experiments with shallow water equations are conclusive
enough to give confidence that the method can be applied to operational NWP
problems in a not too distant future. Some rather preliminary thoughts about
possible strategies of use were outlined. In fact the last two of them are
part of the plans at the French Weather Service (DMN) to develop a new

forecasting system oriented towards short range global synoptic and local
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mesoscale features; the first one (the only one tested here in the shallow

water version) could easily be applied to medium range global forecasting.

These types of application will require progress in at least two connected
areas: parametrization schemes with a wider range of validitf in terms of
horizontal scales and semi Lagrangian time stepping. There is, however, no
reason to fear that such progress cannot be achieved to a sufficient extent in
the coming years and we thus foresee that the "F. Schmidt transform" will soon
be mentioned not only for its remarkable mathematical properties but also for

its unifying role in operational NWP problems.
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APPENDIX A
TRIGONOMETRIC INTERPRETATION OF THE RESULTS OF SECTION 2

The results of this paper can be interpreted in a more geometric (or rather

trigonometric) sense.

Let us first consider the transform introduced by Schmidt (1977) who,

surprisingly enough, never mentioned its obvious geometrical interpretation

[ ]
(in its most simple analytical form the transform reads tan b c tan x

5 5 when

going from the real (¢) to the pseudo (¢') sphere)
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Fig. 10 The transformation associated to a magnification in the complex
plane.

Figure 10 has been drawn in the 0Oxz plane but a rotation around the 0x axis in
the Oxy plane after going from P' to P (rotation after homothetie) would, of
course, keep the spectral and conformal properties of the transform and the

result in the complex plane Oxy would be
x' + iy' = (o + ia") (x + iy)
The crucial point, if one wants to abandon the priviledged role of the 0z axis

(i.e. to rotate the points of maximum and minimum resolution) is that the

relation

tan Of + 52) = 2 is homographic in tan-g

Let us, for the time being, stay in the 0xz plane, that is the complex numbers

in the Oxy plane will keep real values.
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A rotation by an angle ¢0 of the axis connecting the points of maximum and
minimum resolution can readily be converted into an homographic transform

along the 0x axis of the Oxy plane. Using the trigonometric formula just

¢

above and setting tan 59'= - g-one gets
cx - 1 :
X = = .
x + ¢ (a.1)

We still have two things to show to come to result equivalent to the one of
Section 2: first that the relation (A.1) remains valid when going to the full
complex plane and second that all the degrees of freedom of the most general
homographic complex transform can be expressed by a combination of (A.1) and

of homotheties/rotations.

Let us first prove the second point. Depending on the arbitrary choice of the
0x axis in the Oxy plane we can choose c¢ real without loss of generality.

Thus one homothetie/rotation before and after (A.1) will lead to

X
c
X _ B+i g’ _ _clotia"') x - (otig') (B+iB')
otia' T x = X = x + ¢ (B+ig') (a.2)
X 4. .
B+ig'

that possesses 5 of the 6 degrees of freedom of the general complex

homographic transform, the last one being the one we just removed (c real).

Finally, we study the equivalent of (A.1) with X+iY replacing X and x+iy

replacing x.

We obtain:

_ (ex=1) (x+c) + cy?

2

(x+c)2 + y2
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Let us compare this result with a rotation around the Oy axis in the three

dimensional space.

. _ 1=x2-y2 . _ 2Vx2+y?

From X,y we get ¢, A : cos ¢ = 1+x2+y2 sin ¢ = 1+x2+y2
cos A = — sin A = —Y
Vx 2+y 2 Vx 24y 2

Thus on the sphere (nondimensionalized by its diameter) and after an inverse

stereographic projection,

2x' = sin ¢ cos A = 2x/(1+x2+y2)

2y' = sin ¢ cos A = 2y/(14+x2+y?2)

2z' = cos ¢ = (1-x2~y2)/(1+x2+y2)

¢o 1
The rotation has ¢d for angle with tan 3 "3
2

. _ c4-1 , _ —2c
i.e. cos ¢0 ey and sin ¢O 5201
The rotation acts in x'z' to get X'Z' with Y'=y'

2x' = [(2x) (c2-1) = (1-x2-y2)(2c)]1/[(1+x2+y2) (c 2+1)]
2Y' = [(2y) (c2+1) 1/1(1+x2+y2) (c2+1) ]
2Z' = [(1-x2-y2)(c2-1) + (2x) (2c)1/[(1+x2+y2)(c2+1)]

And, going back to the tangent plane 0XY by stereographic projection:

o 2X'  (cx-1)(xtc) + cy?
X=95227 T (xt0)? + y2 (B.5)
v = 2y'  _ _ (c?+)y (2.6)
T 142z'  (x+c)? + y? :

that is Equations A.3 and A.4; g.e.d.
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APPENDIX B
NON-LINEAR NORMAL MODE INITIALISATION

We consider the shallow-water equations 3.3 linearized in the vicinity of a

state of rest:

I
=
X

VA a-=-Y (f

1<d
>
w
~

(B.7)

I
&
x

VA B+ V. (f

i
B>
g
1
e
g

le ¥z 2l
2

- 9 F' (A, u") B

There are two differences between this set of equations and the corresponding

set over the geographical sphere:

i) f, the planetary vorticity, is not equal to 2Qu' as in the isotropic

case.

ii) F'(A',u') is introduced in the equation of evolution of the

geopotential.

It has to be noted that, in general, we lose the separability between latitude
and longitude; and in the particular case where the pole of stretching is at
the northern pole, we lose only the separability between the symmetric and

antisymmetric modes with respect to the equator.

The following developments are valid in this latter case. We make the further

approximation:

£f = 2Q (f0 + £, u (B.8)

1

which is valid if the minimum of resolution over the geographical sphere is
more than T2 (e.g. with a truncation at degree 21 over the mapped sphere, the

stretching factor has to be less than 10).
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The mapping factor is a polynomial of degree 2 in y':

] [] ] = ] 1 ] ] 2
F'(A",u") Fo + Fyop' + Foou (B.9)
Thus the equation B.7 reads:
da 3n g a8 g
ok _ - La 2 - - -2
St 2@ [ f1 TN fO B f1 1B (1-u%) f1 o ]
-1 -1
B8 _ 50 (¢ B0 B _2) ¢ A @ _ 1
v 20 [ f1 o + fo o + f1 pa + (1-u%) f1 1 ] 22 Adp (B.10)
_a_é = = 71 ' [ ' 2
3t ¢ B(FO + F1 u + F2 u )

We introduce the following non-dimensionalization of the equations in order

to:
i) have a real operator

ii) improve the conditioning of the eigenvalue problem.

n o= &
A =52
R I
B = isg (B.11)
1 1
T
]
/FO¢
20t

T=—

The equations become:
-1 -1

oa A A 93A° B
—_— = = j + + + -2
3T 15 T fo B £y uB+ (1mp%) £, 7 (2.12)
-1 -1 F'o

oB 3A_ B 3A A V0 %
== - + + + (1-42 + z
gt~ T Ep Ty tE At E wBr () £y 2 l8l%c

F! F' F!
sc v %o 3 1 2
ar =z A7 L0 w2 ) Bl

o To
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We express A, B and C in spherical harmonics, and since we have obviously a

separation between the different zonal wave numbers m, for a given m we have:

5 + 0o +o
m _m m m m m m m m m
- A Y = Y K f£f A + B + +
9T 2 n n z n L n 1 'n f0 n qn f1 Bn+1 Pn f1 Bn—1]
n=m n=m
5 + oo + o0
m _m m m m m m m m m
— B_Y = b4 + +
o ) . Yy ) o K E B +f A +q £,A  +p £ A _,
n=m n=m
+ e cN (B.13
€2 “n B.13)
5 + o0 + o 2 Fé
m _m m m m m
e Y - + + —
oT z c n Z En Yn [Bn (1 (Dn Dn+1) F!
n=m n=m 0
i RS
m m m m
+ — + ———
n+1 n+1 P! Bn—1 Dn F!
0 0
1 FI
m m m 2 m m m 2
+
Bn+2 n+1 Dn+2 F6 Bn-2 Dn-1 n Fé]
with e = vn(n+1) v ¢F! L
n 0 2Qa
22
m n<-m
D =
n 4 4n 2-1
m m 0
Kn n(n+1) k0 0
m m n+1 0
Pn B Dn n P0 =0
m _ _m n
qn n+1 nt+1

We solve the eigenvalue problem defined by B.13 for a given m énd obtain the
normal modes of the model. We are then able to use the Machenhauer non-linear
normal-mode initialisation algorithm. Nevertheless, it has to be pointed out

that the crucial problem of the storage of the normal modes is now worse:

i) as we have lost the separability between symmetric and antisymmetric

modes, the storage requirements are multiplied by two.

ii) the scalar product for which the modes are orthogonal corresponds to a
uniform measure over the geoéraphical sphere and is no longer diagonal
over the mapped sphere. The practical consequence is that we need to
store both the expansion of the spherical harmonics in terms of the
normal modes and the normal modes in terms of the spherical harmonics.
The storage requirements are then multiplied by another factor of 2.

341



References

Arpe, K. and Dittman, E., 1987: Comparison of forecast performances up to 5
days with a global and a hemispheric model. Beitz.Phys.Atmos. 60, 193-210.

Asselin, R., 1972: Frequency filter for time integrations. Mon.Wea.Rev., 100,
p 487-490.

Cartan, H., 1961: Téorie €lémentaire des fonctions analytiques d'une ou
plusieurs variables complexes. Hermann, publisher, Paris. 231 pp.

Coiffier, Ernie, Geleyn, Clochard, Hoffman, Dupont, 1987: The operational
hemispheric model of the French Meteorological Service, Jour.Met.Soc.Japan.,
NWP Symposium special issue, 1987, pp 337-345.

Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction
models. Quart.J.R.Met.Soc., 102, 405-418.

Jarraud, M., and Simmons, A., 1983: The spectral technique. Report of ECMWF
Seminar, 1983: Numerical techniques for weather prediction. 2, 1-60.

Machenauer, B., 1977: On the dynamics of gravity oscillations in a
shallow-water model with applications to normal mode initialization.
Contrib.Atmos.Phys. 50, 253-271.

Ritchie, H., 1987: Semi Lagrangian advection on a Gaussian grid.
Mon.Wea.Rev., 115, 608-619.

Robert, A.S., Hendersen, J., Turnbull, C., 1972: An implicit time integration
scheme for baroclinic models of the atmosphere. Mon.Wea.Rev., 100, 329-335.

Ssaff, E.B. and A.D. Snider, 1976: Fundamentals of complex analysis, Prentice
Hall.

Sharma, O.P., Upadhyaya, H., Braine-Boussaine, Th., Sadourny, R. Experiments
on Regional Forecasting using a Stretched Coordinate General Circulation
Model. Jour.Met.Soc.Japan., NWP Symposium special issue, 1987, pp 263-271.

Schmidt, F., 1977: Variable fine mesh in spectral global model.
Beitz.Phys.Atmosph. 50, 211-217.

Schmidt, F., 1982: Cyclone tracing; Beitr.Phys.Atmosph. Vol. 55 No. 4,
335-357.

Sommerville, R.C.J., 1980: Tropical influences on the predictability of ultra
long waves. J.Atmos.Sci., 37, 1141-1156.

Staniforth, A. and Mitchell H., 1978: A variable resolution finite element
technique for regional forecasting with the primitive equations. -
Mon.Wea.Rev., 106, 439-447.

Sugi, M., 1986: Dynamic normal mode initialization. Jour.Met.Soc.Jap. 64,
623-636.

Temperton, C., 1985: Implicit normal mode initialization. 1935 World Climate
Research Program Report on research activities in atmospheric and oceanic
modelling, World Met. Org., p 1.21.

342





