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1. INTRODUCTION

The need for higher-resolution numerical weather forecasts motivated
Robert (1981, 1982) to propose the coupling of a semi-Lagrangian treatment
of advection (where stability is no longer limited by the magnitude of the
horizontal wind) with a semi-implicit treatment of gravitational osecilla-
tions. This idea was first demonstrated in the context of a shallow-water
equations gridpoint model, and later extended to the baroclinic primitive

equations (Bates and McDonald, 1982; Robert et al, 1985).

During the last several years a number of investigators have pursued
the stability advantages of semi-Lagrangian advection in different con-
texts. Further applications of the technique to gridpoint models may be
found in Bates (1984), McDonald (1986), Ritchie (1986) and Bates (1988).
Recently the meﬂhod has been extended to include both finite-element
(Staniforth and Temperton, 1986) and spectral (Ritchie 1987, 1988) method-
ologies. Semi-Lagrangian advection has also been proposed for pollutant
transport problems (Pudykiswicz et al., 1985) and moisture advection
(Ritchie, 1985). |

Present semi-Lagrangian schemes are based on discretization over

either two or three time levels. Two-time-level schemes are potentially

twice as efficient and simpler to code than three-time-level schemes and
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additionally have no time computational modes. In practice however the
advantages of two-time-level schemes over three-time-level ones were not
fully realized by the early two-time-level schemes, due to the difficulty
in obtaining 2nd-order accurate (0(At?)) trajectories (Staniforth and
Pudykiewicz, 1985; McDonald, 1987). Independently Temperton and Staniforth
(1987) and McDonald and Bates (1987) proposed a 2nd-order accurate method
of obtaining the trajectories for two-time-level models, and this approach
has been pursued by Purser and Leslie (1988) for gridpoint regional models.
Such an approach offers a potential doﬁbling of efficiency with respect to
three-time-level schemes. This was demonstrated by Temperton and
Staniforth (1987) for a shallow-water finite-element-model, and by C8té and
Staniforth (1988) for a spectral shallow-water model. In these two-time-
level sohemeé, all the linear terms are treated implicitly, while the non-
linear terms are either treated explicitly using time-extrapolated values
or implicitly via iteration. The resulting algorithm is unconditionally
stable (in the linear sense) which allows the timestep to be chosen on the
basis of accuracy alone. The purpose of the present paper is to present
the basic ideas of this approach, together with some substantiating
results, and to compare them with those of the companion paper of Temperton

and Ritchie (1988) for three-time-level schemes.

2. APPLICATION TO A SHALLOW WATER FINITE-ELEMENT MODEL

2.a Governing equations

We first examine the application of a two-time-level semi-implicit/
semi—Laérangian scheme to a finite-element model of the shallow-water
equations on a polar-stereographic projection. The governing equations and
notation are as in the companion paper of Temperton and Ritchie (1988).
Thus V

du
Tt o " IV = -KS,, (2.1)
av

F® 7 ¢y + fU = -KSy, (2.2)
Se(ing) + D = 0, (2.3)
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where

K = %(U2+V2), S = m?, D = S(UX+Vy) and

d 9 d 0

F -5t s(u§§+v§§).

Suppose that the model variables U, V, ¢ are defined at a set of
grid points at time levels t, (t-At), (t-2At),..., and that the integration
is to be carried forward to time-level (t+At). For each gridpoint X, we
consider the trajectory of a particle which arrives at x at time (t+At),
and we approximate this trajectory by a straight line in (x, y) space over
the time interval [t, t+At] as illustrated in Fig. 1. Thus in (x, y, &)

space, the trajectory begins at (x-a, t) and ends at (x, t+aAt).

2.b Trajectory calculations

To implement the semi-Lagrangian algorithm, the first step is to

determine the displacements a by approximate integration of
dx
— =V = (8u, sv). (2.4)

dt

Perhaps the simplest such approximation (method 1) is that of Bates
and McDonald (1982), where o is computed explicitly from the relation

a = AtV(x,t). ” (2.5)
However, as we show later, method 1 leads to serious truncation errors when

used with large timesteps.

Since enhanced stability is of little benefit if achieved at the
expense of accuracy, we examine various alternatives for improving the
accuracy of the trajectory computations. A straightforward method

(method 2) is to extrapolate the winds at mesh points to time (t+%At)

using

Vix,t+%At) = %[3V(x,t) - V(x,t-At)] (2.6)
and then to solve iteratively

o = AtV(x-Yeo, t+¥%At) (2.7)

for o, using interpolation to evaluate quantities at (x-%a). Experiments
show only small differences between linear and cubic interpolation in our
trajectory computations. This iterative procedure is similar to that in-
troduced by Robert (1981), and discussed in the companion paper. A suffi-

cient condition for convergence is given in Pudykiewicz et al. (1985).

77



Fig. 1 Two-dimensional trajectory. Departure point -
point - (x,t+At).

(x~g,t); arrival

78



Extending method 2, we replace the two-time-level -extrapolation
(2.6) by the three-time-level extrapolation 4

V(x,t+¥At) = (1/8)[15V(x,t)-10V(x,t~At)+3V(x,t-2At) ] - (2.8)
in the iterative solution of (2.7). This method (method 3) turns out to
yield the most accurate trajectories of the various methods tried. All of
these extrapolation schemes yield winds at (t+%At), which can also be used

to compute the time-centred metric terms in (2.1) and (2.2).

2c. Discretisation of governing equations

Once g has been found, the total derivatives can be approximated by

dF  FY-F~
_}

3 7 TR ‘ (2.9)
where
F* = F(x,t+At), , o - (2.10)
F~™ = F(x-a,t). (2.11)

Here F* is F evaluated at the arrival point (a meshpoint) and F~ is F

evaluated (by cubic interpolation) at the departure point.

The discretisation of (2.1) - (2.3) is analogous to that of the
companion paper. It consists of taking time averages and differences for
the terms on the left-hand-sides and evaluating the right-hand-sides midway
along the trajectories. The principal differenceé are that these averages
and differences are taken over a time interval of At rather than 2At, that
the Coriolis terms are time-averaged rather than explicitly evaluated, and
that the metric terms (which are small for this projection) are evaluated
using extrapolated values for the winds. Regarding this lattef point it is
possible to avoid calculating these terms explicitly and this is described
in Coté (1988): the discretisation is then a Crank;Nicolsonvone along the
trajectories. Results using the two methods are virtually indistinguish-

able and are quantified in C8té (1988).
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Egs. (2.1)-(2.3) are thus discretised as
ut-u-

—— * %(¢;+¢;) - Bl (EV)P(FV) ] = ~(Ks_)°, (2.12)
Vvt BeT+07) + B[ (FUI*+(£U)"] = -(KS )° (2.13)
It y %y y' ! ’

(Ing)*-(1ng)~ + B(D*4D™) = 0 (2.14)

AT
where (  )° denotes evaluation at the midpoint (x~%20, t+%At) of the trajec-

tory.

Manipulation of (2.12) - (2.14) leads to a single (elliptie) equa-
tion for ¢* (see Temperton and Staniforth, 1987 for details), viz.

(1), + (ag?) + (vg?) - (bg?) = HLADOT oo (2.15)
bxlx T takyly T B8 (b)) T sty ’ :

where a = 1/[1+(%fAt)2] and b = %fAta. This equation is solved for ¢* and
the winds are obtained in an analogous way to that of the companion paper.

Details again may be found in Temperton and Staniforth (1987).

2.d Analysis of scheme

It can be shown (Temperton and Staniforth, 1987; McDonald, 1987)
that the time truncation error of the scheme depends on the method used to
calculate the trajectories. Using method 1 leads to only first-order

accuracy in time, whereas methods 2 and 3 yield second-order accuracy.

2.e Results

The experimental procedure closely follows that of the éompanion
paper. Thus, the model was run over a square domain of side 20 000km
centred at the north pole, using a stereographic projection true at 60°N
and bounded by a solid wall in the vicinity of the equator. This domain
was covered by a non-uniform mesh of 101x101 points, with a 61x61 uniform
high-resolution (100km) mesh over the Nofth American 'areavof interest’
(see Fig. 2 of the companion paper). The same carefully balanced initial
conditioﬁs as before were used, based on an operational 500 mb analysis for
12 GMT on 28 February 1984. The model was run to 48 hours with various
choices of the scheme for calculating displacements, and with various

timestep lengths.
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To evaluate the results obtained using variants of the described
scheme on the non-uniform grid, the forecasts were compared against those
of a control run on a uniform 201x201 100km mesh covering the same domain.
This control run used the three-time-level semi-implicit Eulerian formula-
tion of Staniforth and Mitchell (1977, 1978), with a timestep small enough

(At=10min) to make the time truncation errors negligible.

For a preliminary assessment of the accuracy of the schemes, we
present in Fig. 2 a series of maps of the forecast height field after 48
hours. Figure 2(a) shows the 'control' forecast using the Eulerian scheme
on a uniform high-resolution grid with a small timestep. The remaining
forecasts all used the non-uniform grid. Figure 2(b) shows the forecast
using scheme B of the companion paper with a timestep of 90 minutes. Over
the North American high-resolution 'window' the forecast appears identical
to the control run, with only small differences over the outer low-resolu-
tion areas. Since scheme B is a centred three-time-level scheme, time-
derivatives are evaluated over an interval of 2At=3 hours, and the goal is
to obtain similar accuracy using a two-time-level scheme with a 3-hour

timestep.

Figure 2(c) shows the forecast using the two-time-level scheme
together with method 1 for the displacement calculations, and a timestep of
10 minutes. Even with such a small timestep the errors are considerable
(e.g. 4 dam in the central value for the low over Quebec). Experiments
with larger timesteps showed a clear 0(At) growth of the erfors, and this

method is evidently inadequate for our purposes.

Figure 2(d) shows the corresponding forecast with a timestep of
three hours, using method 2 (two-time-level extrapolation) for the dis-
placement calculations. This forecast, though reasonable in view of the
large timestep, is byrno means as accurate as that of scheme B with half

the timestep shown in Figure 2(b).

For the forecast shown in Figure 2(e), a timestep of three hours is
again used but with method 3 (three-time-level extrapolation) for the
displacement calculations. With this scheme the goal was achieved, in that
the control forecast was reproduced with essentially the same accuracy as

that of scheme B with half the timestep.
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SCHEME B DT = 90 MIN DAY 2

<f<

METHOD 3 DT = 3 HR DAY 2 METHOD 3 DT = 6 HR

DAY 2

Fig. 2 Forecast geopotential height fields at 48 hours (contour interval
.10 dam).

(a)

(b)
(e)
(d)
(e)
(f)

Control run on uniform grid (all other forecasts on non-uniform
grid);

Scheme B of companion paper with At = 90 mins;

New scheme with method 1 for displacements and At = 10 mins;
New schemes with method 2 and At 3 hours;

New scheme with method 3 and At 3 hours;

New scheme with method 3 and At 6 hour.
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m RMS HEIGHT DIFFERENCE, DAY 2
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Fig. 3 (a) R.m.s. differences (m) from control run, in the height field
over region of interest at 48 hours, as a function of AT.
« Eulerian; x Scheme B; 0 New scheme with method 2 for
displacements; + New scheme with method 3.
(b) As (a) but wind field (ms™ ).
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Finally, Figure 2(f) shows the corresponding forecast using method 3
with a timestep of six hours. The error level is now unacceptable, but we
show the figure to make the point that this scheme produces a forecast
which is stable and not completely unreasonable, using a timestep 30 times
longer than the stability limit for an Eulerian semi-implicit scheme at the
same horizontal resolution. With such a scheme we are clearly in a better
position to choose the timestep on the basis of balancing the temporal and
spatial truncation errors, rather than being constrained by considerations
of stability.

In order to investigate the growth of the time-truncation error as a
function of timestep length of the two-time-level scheme using methods 2
and 3, a series of forecasts were run on the non-uniform grid with differ-
ent values of At. The accuracy of each forecast was measured by computing
the r.m.s. differences (in the height and wind fields) from the control
forecasﬁ run on the uniform high-resolution grid with a small timestep.
The r.m.s. differences were computed over the 'area of interest' where the

non-uniform and uniform grids coincide.

The results at 48 hours are plotted in Figs. 3(a) and (b) for the
height and wind fields respectively. As a comparison is made with the
corresponding results of a three-time-level scheme, we have chosen to plot
the r.m.s. differences as a function of At, the interval over which time-
derivatives are calculated. Thus At=At for the two-time-level schemes, but
At=2At for a three-time-level scheme. For a given value of Ar, the two-
time-level scheme requires approximately half the work of the three-time~
level scheme, but the time-truncation errors are in principle formally

equivalent.

In Figs. 3(a) and (b), the solid circles plotted at At=20min show
the r.m.s. difference from the control run for a forecast using the same
Eulerian Soheme but on the non-uniform grid. Since the timestep is small,
this provides an approximate measure of the spatial truncation error

incurred by running with lower resolution outside the area of interest.
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The crosses show the results for the three-time-level scheme B of
the companion paper. As seen in this paper, the forecast over the area of
interest wusing this scheme, with timesteps of at least one hour
(A1=120min), was more accurate than that of the small-timestep Eulerian
scheme, and was still of comparable accuracy with a timestep of 90 minutes

(A1=180min).

The goal of the study was to reproduce this level of accuracy with
half the computational work, using a two-time-level scheme. The results
using method 2 (two-time-level extrapolation) for the displacements are
shown in Figs. 3(a) and (b) by open circles. For timesteps (At) of up to
90 minutes, the goal is clearly achieved, while for longer timesteps the
growth of time-truncation errors becomes evident. Nevertheless, this
extrapolation scheme might well be adequate if, for example, a smaller
timestep is chosen in a more complete model to resolve the time-evolution

of physical processes.

The results using method 3 (three-time-level extrapolation) for the
displacements are shown by the 'plus' symbols. This scheme yields accept-
able accuracy with timesteps as long as three hours (At=180min); the r.m.s.
differences are similar to those of scheme B throughout the range, while
remaining lower than or similar to those of the corresponding semi-implicit
Eulerian scheme with a much smaller timestep. It seems from these results
that the optimal timestep at this resolution is approximately three hours,
since the spatial and time truncation errors contribute about equally to
the total error. There seems to be little virtue in using timestep greater

than three hours since the time truncation errors will become dominant.
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3. APPLICATION TO A SHALLOW-WATER SPECTRAL MODEL

In the previous section we showed that the two-time-level scheme is
twice as efficient as the analogous three-time-level one for comparable
accuracy, in the context of é shallow-water finite-element mbdel. In this
section we describe how to achieve the same doubling of efficiency in the

context of a shallow-water spectral model.

3.a Governing equations

The governing equations are the shallow-water equations on a
rotating sphere of radius a. We write the momentum equation in 3-D vector
form using the undetermined Lagrange multiplier method as in C®té (1988)
and the continuity equation in logarithmic form as in the previous section.
Thus in standard notation
g V=EF+ur, (3.1)
FEine + V-V = 0. (3.2)

In the above r is the normalized position vector whose components in
a Cartesian frame of reference fixed at the center of the sphere are,

X = COSA cos®@,

y = sin) cose, (3.3)

z = sine,

where ) is the longitude and 6 the latitude,

d
V-agr, (3.4)
F = -20sing r x V - Vo, (3.5)

and p is a Lagrange multiplier determined by requiring that the fluid
elements remain on the sphere, i.e.

rer = 1, (3.6)
for all time. The Lagrange multiplier could be determined at this stage
but as noted in C6té (1988) it is preferable to determine it after discre-

tisation.

The constraint (3.6) implies that V is tangent to the sphere at r,

and therefore
rev = 0. . (3.7)
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This means that the 3-D wind vector has only two independent components

which we write in terms of the wind images U and V. Thus

] A A
V= osgg (U8, + V&) | (3.8)

where ék and ée are eastward and northward pointing unit vectors respec-

tively. Introducing the Helmholtz decomposition of V in terms of the

streamfunction ¢y and the velocity potential ¥, we have

V=rxVg~+Vx (3.9)
U = % (91 - cos® 32), (3.10a)
oA a8 ‘
V = % (EE + Cos@ El), (3.10b)
oA a8
¢ = pe (Tx0) = V2, (3.11a)
and
D= V-V = V%x. (3.11b)
3.b Semi-Lagrangian discretisation

If we know the trajectory of the fluid element that is at position
r* at forecast time (t+At), then Egs. (3.1) and (3.2) may be integrated
following the motion over a time interval At. Thus

vVt WAt BT o= VT o+ kAt FT o+ Kuat(rt4rT) = R, (3.12)

(1ng)* + %AtD* = (In¢)~ — %AtD™, (3.13)
where r~ is the upstream position at time t of the fluid element arriving
at g* at time (t+At) and the negative superscript denotes evaluation at
position r~ and time t. The Lagrange multiplier is determined by
projecting the discretised equation (3.12) onto g*. Since for constrained
motion V¥ and F* are both orthogonal to r*, then so is R and

2 rte(uTe S5 )
== — . (3.18)

st (1+ *er”)

3.c ~Trajectory calculations

To complete the discretisation we need to find the trajectory. A
sufficiently accurate estimate of the trajectory is obtained by integrating
(3.1) and (3.4) subject to (3.6) over the interval [t, t+At] while
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neglecting F. The solutions are great circles whose parameters are deter-
mined by the wind field at (t+%At) for a centred scheme. The midpoint re°

of the trajectory is obtained by iteratively solving

(r¥xye)

-r® = cosd r* + sine r* x ) (3.15)
|ty

where
Ve = U(re, t+hat) , (3.16)
VO
0 =% T At . (3.17)
Geometrically we search for a point r° situated a distance % VoAt

upstream on the sphere such that g*, r° and V° are coplanar. The point r-
is then

r- =2 (r*ero)re - r*, (3.18)

Eq. (3.15) differs from what was done in Ritchie (1988) where the
trajectories are first approximated by straight lines on é tangent plane
followed by a correction to come back to the sphere; the computational cost
of the two algorithms 1is almost identical. The impact of algorithmic
choice is also negligible, giving rise to r.m.s. height differences of only
20 cm for a 5-day integration of a global T126 spectral model with a 2 h

timestep.

As in the previous section we use time extrapolated values for Ve,
This is the key step of the algorithm that allows a saving of a factor of 2
over the usual semi-implicit semi- Lagrangian algorithm where we need to
forecast the wind at time (t+%At). We examine constant (one-term), linear

(two-term) and quadratic (three-term) extrapolation, viz
V(r,t+hAt) = ¢, V(r,t) + c,V(r,t-At) + (1-c,-¢,)V(r,t-2At), (3.19)

with (ec,,c,) = (1,0), (% ,-%) and (%2, _%9) respectively.
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3.d Spectral solution

We first recast Egs. (3.12) and (3.13) in a form more suitable for
solution by the spectral method. We introduce a reference geopotential ¢¥
and define ¢' as the departure of ¢ from ¢¥. Operating on (3.12) with
r*.(Vx) and V- successively, multiplying both sides of (3.13) by ¢* and

transferring the non-linear terms to the right-hand side, we finally

obtain
r + osingD + a% = L, (3.20)
D - asineg + “% + BVZ¢' = M, - : (3.21)
o' + YD = Q, (3.22)
where '
o = QAt, B = AE, Y = ¢*A—t, (3.23)
2 2
and .
= r*-(VxR), (3.24)
M=VeR |, (3.25)
= [¢'—¢*1n(1+%;)] + [¢*1n(1+%;)—YD]". (3.26)

Egs. (3.20)-(3.26) differ in two aspects from the usual spectral
problem. Firstly the presence of the Coriolis terms (o) on the left-hand
side of (3.20) and (3.21) and secondly the non-linear dependance of the
right-hand side of (3.22) on the solution ¢' (first square-bracketed

term).

The first éoint is taken care of by a generalisation of the Helmholtz
solver to include the Coriolis terms. This is out-lined in the appendix of
Cdté and Staniforth (1988), and is equivalent to a spectral model that uses

truncated Hough functions as in Kasahara (1977).

The second point is handled by iteratively solving (3.20)-(3.22) for
¢' with an appropriate initial guess for Q. We use

® jnitial guess " (¢" - D)™ - At(¢'D)e, - (3.27)

the usual semi-implicit expression but with ¢'° and D° obtained via time
extrapolation of mesh values of ¢' and V [c.f. (3.19)] followed by inter-
polation to the midpoint (r°) of the trajectory.
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Fig. 4 1Initial and forecast geopotential height fields at
(contour interval 10 dam).

(a) Initial;

(b) High-resolution (T213) Eulerian control at 120 hours;

(¢) 3~time-level (T126) semi-Lagrangian at 120 hours (At=1 hour);
(d) 2-time-level (T126) semi-Lagrangian at 120 hours (At=2 hours).
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(d)

‘Fig. 4 1Initial and forecast geopotential height fields at 120 hours
(contour interval 10 dam).

(a) Initial;
(b) High-resolution (T213) Eulerian control at 120 hours;

(¢) 3-time-level (T126) semi-Lagrangian at 120 hours (At=1 hour);
(d) 2-time-level (T126) semi-Lagrangian at 120 hours (At=2 hours).
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The rest of the spectral discretisation is identiecal to that
described in the companion papsr. It is a triangularly truncated global
spectral model with a computational Gaussian grid large enough to prevent
quadratic aliasing. The required interpolation at the upstream points is
bi-cubic as in Ritchie (1988).

3.e Results

To assess the accuracy and efficiency of the two-time~level semi-
Lagrangian spectral model with respect to the usual three-time-level model,
we performed 5-day global integrations of the two models at a resolution of
T126 starting from the same data. These integrations were then verified
against a T213 Eulerian integration performed with a timestep of 6

minutes.

The initial geopotential height and the resulting high-resolution
Eulerian control forecast over the northern hemisphere are shown in Figs.
4a and U4b respectively. Fig. 4ec displays the three-time-level forecast
performed with a timestep of 1 hour while Fig. Ud displays the two-time-
level forecast performed with a timestep of 2 hours. Qualitatively one
sees a great similarity between the two semi-Lagrangian forecasts although
one was made with a timestep twice as large. The two main features on the
Eulerian map are a 469 dam low over the Yukon and a 566 dam high over the
Greenland Sea which are forecast at 470 and 565 dam respectively by both
semi-Lagrangian models. Among the differences we note that the 490 dam
contoﬁr over the Arctic Sea in the two-time-level forecast looks more like
that of the control run. The 520 dam contour west of Ireland is missing
from the three-time-level forecast while it encompasses most of the United

Kingdom in the two-time-level forecast.

The two models have different dispersion properties as can be judged
by the trough near the Great Lakes in the control run. The three-time-
level model puts this feature a little ahead while there is a slight lag in

the two-time-level forecast.
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For a more quantitative evaluation of the two forecasts we display in
Fig. 5 the evolution of the global r.m.s. height differences between the
semi-Lagrangian runs and the control run.v We see that the scores are very
close indeed with a small advantage for the three-time-level model at the
beginning of the integration, but the curves cross and the two-time-level

model has a better score near day 4.

In order to investigate the growth of time truncation error as a
function of timestep length, we ran a series of forecasts for different
values of At using the three-time-level scheme of the companion paper and
the two-time-level scheme of this section. The results at 5 days are
displayed in Fig. 6 where again (c.f. Fig. 3) At is the interval over which
time derivatives ére calculated.' For a given valueiof At the two-time-
level scheme requires approximately half the work of the three-time-level
one. Since from Fig.l we see that the two-time-level scheme is at least as
good as the three-time-level one for fixed At, we again conclude that the
two~time-level scheme is twice as efficient as the three-time-level one for

given cost.

b, CONCLUDING REMARKS

In the compénion paper it was shown that semi~implicit semi-
Lagrangian schemes are not restricted to finite-difference models, but can
'be extended to include both finite element and spectral discretisations.
It was fbund that timesteps could be increased by a factor of 5 or more;
with no loss of accuracy, when compared to the corresponding semi-implicit

Eulerian shallow-water models.

In the present paper we have shown in the same context that it is
possible to obtain a further doubling of efficiency by using an O(At?)
accurate two-time-level scheme rather than a three-time-level one, again
without loss of accuracy. The described schemes are fully implicit and
timesteps may thus be chosen on the basis of accuracy rather than

stability.
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Fig. 5 Global r.m.s. geopotential height differences (m) as a function of
time (days) Dbetween semi-Lagrangian runs (T126) and Eulerian
control (T213).

Dotted: 3-time-level (At=1 hour). Full: 2-time-level
(At=2 hours).

m RMS HEIGHT DIFFERENCE, DAY 5

25.j
: +
20. |
| X
l5.j
: %
lU.j
_ +
L X
5.
0.g——"85 170 180
AT (min)

Fig. 6 Global r.m.s. differences (m) from Eulerian control, in the geopo-
tential height field at 120 hours, as a function of At. "+n
3-time-level; "x" 2-time-level.
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We did not address the question of whether the described two-time-
level schemes may be successfully extended to the three-dimensional baro-
clinic equations. This is the subject of ongoing research and all we can

say at present is that preliminary analyses are encouraging.
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