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Abstract

The paper advances the limited-area anelastic model [Smolarkiewicz et al., J. Com-
put. Phys., 254 (2013) 184] for investigation of nonhydrostatic dynamics in mesoscale
atmospheric flows. New developments include the extension to a tetrahedral-based
median-dual option for unstructured meshes and a static mesh adaptivity tech-
nique using an error indicator based on inherent properties of the Multidimensional
Positive Definite Advection Transport Algorithm (MPDATA). The model employs
semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built
on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-
volume spatial discretisation adopts an edge-based data structure. Simulations of
stratified orographic flows and the associated gravity-wave phenomena in media with
uniform and variable dispersive properties, verify the advancement and demonstrate
the potential of heterogeneous anisotropic discretisation with large variation in spa-
tial resolution for study of complex stratified flows that can be computationally
unattainable with regular grids.
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1 Introduction

Historically, atmospheric models across scales and foci of interests were domi-
nated by finite-difference and spectral-transform methods for spatial discreti-
sation of their governing PDEs. In particular, finite-difference methods operat-
ing on regular rectangular grids have prevailed in small and mesoscale models
for research of cloud processes and flows over complex terrain [36], with terrain
fitted grids mimicked by continuous mappings [13] and horizontal resolution
refinement delegated to nested grids [6]. These techniques are still standard
in computational studies from planetary boundary layer to regional climate
[48,12].

Pioneered by the OMEGA model [1] for forecasting high-impact weather, air
quality, and environmental hazard, there has been a growing interest in mod-
elling atmospheric flows on unstructured meshes and utilising flexible mesh
adaptivity. Interest in unstructured meshing per se dates back to the nine-
teen sixties [58], in the context of homogeneous discretisation for global flows.
However, a broader research of flexible mesh adaptivity is relatively new
— cf. the collection of papers [29] and seminars [17] — and adaptive-mesh
atmospheric models have not yet achieved the maturity and acceptance of
structured-grid models, commonly used in research and operations. 1 Fun-
damental balances and wave propagation underlaying atmospheric dynamics
pose new challenges to anisotropic heterogeneous discretisation and flexible
mesh adaptivity, largely developed in the engineering community for neutrally
stratified non-rotating flows [59]; for a substantive discussion see [10].

However, unstructured-meshes and mesh adaptivity offer flexibility unmatched
by the established techniques operating on regular grids. Even though the
latter enable computationally efficient static and dynamic mesh adaptivity
via continuous mappings [31,56,21,3,4], their rigid connectivity imposes strin-
gent constraints on adapted grids. Flexible unstructured meshes relax the
constraints and offer alternative means for optimising variable resolution re-
quired for improved representation of complex physical processes in atmo-
spheric flows. Generally, such flows evince the multiplicity of scales ranging
from a fraction of a millimetre where dissipation occurs, to tens of thousands
of kilometres where planetary weather and climate take place. For some at-
mospheric processes, that are still insufficiently understood in spite of their
relevance to weather conditions in populated areas, flexible mesh adaptivity
can improve solution realizability, and thus cognition and predictability, at-
tainable with available computational resources. Examples include weather in

1 According to the Thomson Reuters Web of Science, among nearly 900 papers
published since 1985 on the topic of “mesh adaptivity” less than 1.5% falls into the
category “meteorology atmospheric sciences”.

2



long winding valleys and mountainous areas, onset and evolution of radia-
tion fog or stratiform clouds, precipitation or extreme events forecasting. This
paper advances the three-dimensional, nonhydrostatic, limited-area model de-
signed for flexible fully unstructured meshes [45] by introducing its implemen-
tation on tetrahedral based median-dual meshes that enable a wide range of
mesh refinement strategies.

The current work extends our earlier developments aiming at generalisation of
the non-oscillatory forward-in-time (NFT) integrators to unstructured meshes.
The NFT integrators were first proposed for finite-difference atmospheric mod-
els [39] and were proven for a range of computational studies from ground-
water flows [19], through all scale atmospheric dynamics [46], to magnetic
cycles in global stellar convection [14]. The roots of the NFT schemes for
unstructured meshes are in the derivation from first principles of the finite-
volume multidimensional positive definite advection transport algorithm (MP-
DATA) together with the stability and convexity theory, convergence analy-
sis, and several MPDATA options [41,42]. 2 Further developments included
an unstructured-mesh finite-volume NFT framework for gas dynamics with
a selection of techniques for mesh adaptivity [50,43] originally developed for
engineering flows [59,49,51]. The applicability of NFT methods to gas dynam-
ics was demonstrated through verifications against benchmarks for all-speed
aerodynamic flows with favourable comparisons to established solutions (the-
oretical and numerical) and convergence studies. Subsequent developments of
the unstructured meshes based NFT integrators focused on meteorological ap-
plications producing models for simulating idealised hydrostatic dynamics of
the planetary atmosphere [52], reduced 2D soundproof models for simulation
of nonhydrostatic gravity-wave dynamics [53,44] and their consequent gener-
alisation to 3D mesoscale modelling of nonhydrostatic dynamics [45] — all
supported with extensive verification studies.

The underlying concept of the numerical model used in the current study
is presented in detail in [45]. In the model, all dependent variables are co-
located, benefiting memory and communication requirements compared to
staggered arrangements. This also facilitates implicit representation of buoy-
ant modes. Generally, NFT labels a class of second-order-accurate two-time-
level schemes (of the Cauchy-Kowalewski type, cf. section 19 in [54]) for in-
tegrating fluid PDEs that are built on nonlinear advection schemes such as
MPDATA. The MPDATA schemes control numerical oscillations in the sense
of high-resolution methods [33], and this assures the nonlinear stability for
the co-located arrangement of dependent variables (cf. appendix A1 in [42]).

2 The potential of MPDATA for unstructured mesh modelling was recognised much
earlier: first in context of mantle convection models [5], and then in the area of
weather and environmental modelling [1]; however the derivation in [42] is the first
to encompass error compensating terms required for unstructured meshes.
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Furthermore, in the NFT solver, MPDATA provides implicit turbulence mod-
elling capability to the full set of equations. The implicit large eddy simula-
tion (ILES) properties of MPDATA-based high-Reynolds-number solvers were
widely documented in the context of structured grids [24,25,7,26,55]. More re-
cently, they were also demonstrated for unstructured meshes [53,44,45] and
verified against published data and LES/ILES results generated with estab-
lished codes in [45]. For unstructured meshes with large variation in spatial
resolution, the ILES capability is especially practical, as it circumvents evalu-
ation of explicit subgrid-scale models and construction of commutative filters
for LES [27], in particular, and does not impede the stability of calculations.

The preceding works on the nonhydrostatic unstructured-mesh NFT mod-
els [53,44,45] verified the excellent accuracy of the finite-volume approach,
using benchmarks from both analytic and laboratory results, and compar-
ing unstructured-mesh results to the corresponding results obtained with the
structured-grid EULAG model [32]. The previously studied physical prob-
lems representative of mesoscale dynamics included nonhydrostatic mountain
waves at weak and strong background stratification (with linear and nonlinear
flow responses, respectively), amplification and breaking of deep stratospheric
gravity waves, low Froude number flows past steep isolated 3D mountain, and
evolution of convective planetary boundary layer. Here, we advance simula-
tion of flows past complex terrain and associated gravity-wave phenomena.
In particular, we consider the special problem of a stratified flow past a two-
scale slab-symmetric mountain — known to bifurcate into a qualitatively in-
correct solution at coarse resolutions — to demonstrate the capabilities of
unstructured meshes and static adaptive mesh refinement. Notably, an a pos-
teriori error indicator that drives the mesh refinement arises from the inherent
properties of MPDATA [50]. We also revisit 3D low Froude number flows to
verify the accuracy of tetrahedral discretisation. Finally, we introduce to the
unstructured-mesh NFT modelling the problem of gravity-wave critical-level
interaction. This problem is essentially stiff, as the vertical wavelength of a
vertically propagating wave diminishes to zero upon approaching the criti-
cal level, so processes acting on small scales become important and even an
infinitesimal amplitude wave becomes nonlinear. The problem exposes bene-
fits of unstructured meshes particularly well as it calls for a high degree of
refinement in a small portion of the computational domain.

The remainder of the paper is organised as follows. The numerical methodol-
ogy is outlined in the next section. Section 3 presents the procedure utilised
for static adaptivity applied to the so-called Schär [34] problem for two-scale
mountain wave. Section 4 examines the accuracy of tetrahedral meshing in
the context of a strongly stratified flow past a steep isolated hill. Section 5
quantifies the model accuracy for simulations with highly anisotropic and in-
homogeneous meshes in the context of critical-level phenomena. Section 6
concludes the paper.
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2 Nonoscillatory forward in time integration

2.1 Governing equations

The numerical solutions presented in the paper are obtained by integrating
either the anelastic Lipps-Hemler PDEs [22,23] or their incompressible Boussi-
nesq limit [47], in absence of viscosity, friction, diabatic effects and planetary
rotation. In both cases, the governing conservation laws of mass, momentum
and thermodynamic properties can be compactly written as

∇ · (uρo) = 0 , (1)

∂ρou
I

∂t
+∇ · (uρouI) = ρo

(
− ∂π

′

∂xI
+ g

Θ′

Θo

δI3

)
,

∂ρoΘ
′

∂t
+∇ · (uρoΘ′) = −ρou · ∇Θe .

Here, ρ, Θ and π are, respectively, the density, potential temperature and
normalised pressure, π = p/ρo with p marking the pressure. For I = 1, 2, the
velocity components refer to the horizontal directions x1 ≡ x, x2 ≡ y with u1 ≡
u, u2 ≡ v; whereas in the vertical I = 3 with x3 ≡ z and u3 ≡ w. Subscripts

o denote the static reference state, while primes denote perturbations with
respect to a hydrostatically balanced ambient state distinguished with the
subscript e. In the anelastic case vertical profiles ρo(z) and Θo(z) are defined
in terms of a constant stratification So ≡ d ln Θo/dz = N2/g, where g(=
9.81 ms−2) and N denote the gravitational acceleration and the buoyancy
frequency, respectively. In the Boussinesq limit, ρo and Θo are constant. In
examples discussed in this paper the ambient states assume either constant or
linearly decreasing with height wind U(z) and thermodynamic profiles defined
by So according to the hydrostatic balance of the governing PDEs.

2.2 Semi-implicit integrator

For the construction of numerical solution to the momentum and the potential
temperature equations in (1), the generic NFT template algorithm is applied

∀i,n ψn+1
i =Ai(ψn + 0.5δtRn, VVVn+1/2, ρo) + 0.5δtRn+1

i (2)

≡Ai(ψ̃, VVVn+1/2, ρo) + 0.5δtRn+1
i

≡ ψ̂i + 0.5δtRn+1
i ,
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with ψ symbolising a dependent flow variable uI or Θ′ and R denoting the
ratio of the associated right-hand-side (rhs) in (1) to ρo. Indices n and i have
their usual meaning of the temporal and spatial positions. The operator A is
a shorthand for the edge-based MPDATA [42], and it already accounts for a
division of conservative variables ρoψ by ρo. The VVVn+1/2 argument of A denotes
an O(δt2) estimate of ρou at t+0.5δt; whereas Rn+1 is a second-order-accurate
finite volume representation of R; see [46] for extended discussion.

In the default form, the solution commences with the linear extrapolation of
the advective mass flux

VVVn+1/2
i = 1.5VVVni − 0.5VVVn−1

i , (3)

followed by the computation of auxiliary variables

ũi = uni − 0.5δt

(
∇π′ − gΘ′

Θo

k

)n
i

, (4)

Θ̃′i = Θ′
n
i − 0.5δt (u · ∇Θe)

n
i ,

and their subsequent MPDATA transport supplying û and Θ̂′ for (2); here
k = ∇z denotes the unit vector in the vertical direction. In consequence, the
realisations of (2) for the momentum and potential temperature are

un+1
i = ûi − 0.5δt

(
∇π′ − gΘ′

Θo

k

)n+1

i

, (5)

Θ′
n+1
i = Θ̂′i − 0.5δt (u · ∇Θe)

n+1
i . (6)

The resulting system (5)-(6) is implicit, because ∇π′n+1, Θ′n+1 and compo-
nents of un+1 are unknown on the rhs. Due to the co-location of dependent
variables and linearity of the rhs, the implicitness of (5) with respect to Θ′n+1

can be readily removed. Inserting (6) in (5), and combining all terms depen-
dent on un+1 on the left-hand-side (lhs) produces

Lun+1
i = ûi − 0.5δt∇π′|n+1

i , (7)

where L symbolises a 3x3 matrix of known coefficients. Consequently, (7) can
be written in a closed form as

un+1
i = ̂̂ui − 0.5δt (C∇π′)n+1

i , (8)

where ̂̂u = L−1û symbolises the modified explicit part of the solution, and
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C ≡ L−1. For the applications addressed in the formulae in section 3.2 of [45]
hold, upon which the components of ̂̂u are:

ˆ̂u = û , ˆ̂v = v̂ , ˆ̂w = (ŵ + 0.5δt βΘ̂′)[1 + 0.25δt2β∂zΘe]
−1 , (9)

with β ≡ g/Θo; whereas the only nonzero entries of C are

Cxx = Cyy = 1 , Czz = [1 + 0.25δt2β∂zΘe]
−1 . (10)

In order to complete the solution for u in (8), the discrete elliptic Poisson
problem for π′ is formed by applying the discrete divergence operator to ρo×(8)
and noting that ∇i · (ρou)n+1 must vanish on the lhs due to the continuity
constraint in (1), thus resulting in

∀i ∇i · ρo
(̂̂u− 0.5δt∇π′n+1

)
= 0 . (11)

The Poisson problem (11) is solved (subject to suitable boundary conditions)
to a specified tolerance using the generalised conjugate residual algorithm, as
described in [44]. The solution to (11) completes (8), upon which the poten-
tial temperature is updated according to (6). A simpler NFT integrator with
explicit representation of the buoyant modes is available as an option (section
3.3 in [45]); however, the outlined semi-implicit scheme is more accurate [8,57]
and, thus, exclusively used in this study. The summarised formulation of the
semi-implicit integrator, is a special case of a general procedure admitting
various PDE systems with multiplicity of the forces on the rhs; cf. [32,46] and
references therein.

2.3 Spatial discretisation

The spatial discretisation assumed in the template algorithm (2) uses the
edge-based median-dual finite volume approach [42] integrating the generic
physical form of the governing PDE over arbitrarily-shaped cells, with all
discrete differential operators evaluated from the Gauss divergence theorem;
cf. section 3.4 in [45]. A schematic of the edge-based data structure for an
arbitrary hybrid mesh on a 2D plane is shown in Figure 1. The median-dual
finite volume approach constructs the control volume containing the node i
by joining the barycentres of polygonal mesh cells encompassing the node i
with the midpoints of the edges originating in the node i. Having defined the
mesh in planar geometry, all geometric elements such as cell volume, cell face
area, and normals are evaluated from vector calculus. All dependent variables
are co-located in the nodes.
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i
j

Fig. 1. The edge-based, median-dual approach in 2D. The edge connecting nodes
i and j of the primary polygonal mesh pierces, precisely in its middle, the face Sj
shared by computational dual cells surrounding nodes i and j; open circles represent
barycentres of the primary mesh, while solid and dashed lines mark primary and
dual meshes, respectively.

𝒊 

𝒋 

𝑆 𝑗
 

Fig. 2. The edge-based median-dual approach in 3D. The edge connecting nodes i
and j of the primary mesh pierces (at the edge centre) the face Sj of a computational
(dual) cell surrounding node i; open circles represent barycentres of polyhedral cells
surrounding the edge. Dashed lines mark a fragment of the dual mesh.

The construction of a dual mesh in three dimensions is similar, yet providing
an illustration equivalent to Fig. 1 is hardly possible. Instead, Fig. 2 shows
the edge i→j connecting nodes i and j, intersected exactly in the middle
by the face Sj of a dual cell containing node i. The construction of the face
Sj involves first the identification of the polyhedral elements belonging to
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the primary mesh that share the edge i→j. Next, the polyhedral barycentres
and the centres of polygonal faces, through which neighbouring polyhedra are
jointed, are connected with each other and with the mid-point of the edge
i→j, as indicated by dashed lines in Fig. 2, to form an umbrella like face of
the 3D dual mesh.

3 MPDATA driven mesh adaptivity

The finite volume discretisation with the edge-based data structure is well
suited for investigating mesh refinement. In particular, this includes a flexi-
ble use of mesh adaptivity techniques, for which an explicit analytic form of
the leading truncation error arising from MPDATA can be exploited. For the
reader’s convenience, the next subsection summarises the finite-volume MP-
DATA, whereas the MPDATA based error indicators for mesh refinement are
discussed in subsection 3.2 and subsequently illustrated in subsection 3.3.

3.1 Highlights of finite-volume MPDATA

In essence, MPDATA is an iterative application of the first-order accurate
upwind scheme, where the first iteration uses physical velocities while all sub-
sequent iterations compensate the leading truncation error of the preceding
iteration using analytically derived pseudo-velocities and most recent iterates
of the transported field. The MPDATA approach encompasses a number of
schemes, however, even the simplest (basic) algorithm with one corrective it-
eration is conservative, sign-preserving and at least second-order accurate.

The explicit part of the solution in (2) applies MPDATA operator to an aux-
iliary variable ψ̃. Integrating ψ̃ over the volume of a cell surrounding node i
results in

ψ̃
(k)
i = ψ̃

(k−1)
i − δt

ϑi

l(i)∑
j=1

F⊥j
(k)
(
ψ̃

(k−1)
i , ψ̃

(k−1)
j ,V⊥j

(k)
)
Sj . (12)

Here the summation is over edges connecting node i with one of its immediate
neighbours j. There are l(i) edges connecting the node i with its neighbours,
and Sj refers both to the cell face pierced by the jth edge and its surface area.
F⊥j is the mean normal flux through the cell face Sj averaged over temporal
increment δt and V⊥j is the corresponding normal advective mass flux evaluated
at the cell face. The cell volume ϑi contains node i. Furthermore, k = 1, ..,K
numbers the MPDATA iterations such that
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ψ̃(0) ≡ ψ̃n , ψ̃(K) ≡ ψ̃n+1 , (13)

V⊥(k+1)
= V⊥

(
VVV (k), ψ̃(k),∇ψ̃(k)

)
; V⊥(1) ≡ V⊥|n+1/2 . (14)

All normal fluxes F⊥j
(k)

assume the functional form of the generic upwind flux

F⊥j
(k)

(ψ̃
(k−1)
i , ψ̃

(k−1)
j ,V⊥j

(k)
) =

[
V⊥j

(k)
]+

ψ̃
(k−1)
i +

[
V⊥j

(k−1)
]−
ψ̃

(k−1)
j , (15)

where the nonnegative/nonpositive parts[
V⊥j

(k)
]+

≡ max
[
0, V⊥j

(k)
]
,
[
V⊥j

(k−1)
]−
≡ min

[
0, V⊥j

(k−1)
]

(16)

always coincide with outflow/inflow from the ith cell.

MPDATA relies on expressions specifying the functional dependence (14) of

the V⊥(k+1)
iterates of the normal advective mass flux. Generally, their ex-

plicit forms derive from the modified equation for the upwind advection, gen-
erated by expanding advectors V and advectees ψ entering the scheme about
a common point (x, t) and applying the Cauchy-Kowalewski procedure [54] to
express higher-order temporal partial derivatives by the spatial partial deriva-
tives [39,40]. This reveals the explicit form of the leading truncation-error
flux of a predominantly diffusive character. Noting that the form of the er-
ror is an attribute of the functional form of upwind differencing — i.e., it
remains the same for all k in (12) — and writing the error flux as the ad-
vective flux of ψ̃, defines the error-compensating pseudo-velocity in (14) as

V⊥(k+1) ≡ −(Error/ψ̃)(k). In particular, for the median dual meshes used
here, the expression for the pseudo-velocity derived in [42] reduces to

V⊥
∣∣∣(k+1)

sj
=

{
0.5|V⊥|

(
1

|ψ̃|
∂|ψ̃|
∂r

)
(rj − ri)

− 0.5δtV⊥
(
VVV · 1

|ψ̃|
∇|ψ̃|

)
− 0.5δtV⊥(∇ · VVV )

}∣∣∣∣∣
(k)

sj

, (17)

where sj denotes the edge centre and r refers to the parametric description of
the edge r(λ) = ri + λ(rj − ri); λ ∈ [0, 1].

3.2 MPDATA based error indicators

The above summarised evaluation of the pseudo-velocity (designated to com-
pensate the leading truncation error of the first-order accurate upwind ad-
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vection scheme) naturally dictates error indicators for mesh refinement akin
to the Richardson extrapolation. These indicators take advantage of the MP-
DATA property that more accurate solution is obtained from every subsequent
upwind iteration. Because the first- and second-order solutions as well as the
leading error are known explicitly regardless of the mesh adaptivity, such in-
dicators impose minuscule computational complexity and overhead.

The concept of MPDATA based error indicators was proposed in [50] for hyper-
bolic problems in the context of compressible high-speed flows. The indicator
relied on the magnitudes of the directional derivatives of the local solution er-
ror estimate, provided by the second term on the rhs of (12) for k > 1. It was
shown effective both for static and dynamic mesh adaptivity. Mathematically
the PDEs (1) are close to PDEs governing incompressible viscous flows. For
the latter practical indicators extensively used the energy norm, as it gives
information on the accuracy achieved in each computational cell as well as
globally [59]. Commonly, the energy norm is built on the element integrated
product of the deviatoric stress and strain-rate errors. For the inviscid anelas-
tic system (1) such a norm would vanish, as the deviatoric stress tensor is
identically zero in (1). As there is no unique way to devise a practical error
indicator [15], we take a freedom to delegate the role of the energy norm to
the L2 norm of the error fluxes in (12) taken over the local neighbourhood of
each node. Arguably such a norm adopts the spirit of the energy norm, as it
senses the momentum forcing via the auxiliary variable ũ, specified in (4), and
effects akin to subgrid-scale stress through the ILES property of MPDATA.

Here, the implementation of the MPDATA based error indicator follows the
standard strategy for static mesh refinement, whereupon the error indicator
for the new mesh resolution is computed after the solution on the initial mesh
is reached. In this implementation K = 2 and the second order solution for
auxiliary variable ψ̃ is taken from the MPDATA procedure (12). 3 The cor-
responding truncation error fluxes are used to construct an error indicator
as

εi =‖ e ‖i /em (18)

where in line with (12) for K = 2

(‖ e ‖i)2 =

(
δt

ϑi

)2 l(i)∑
j=1

[
F⊥j

(2)
(
ψ̃

(1)
i , ψ̃

(1)
j ,V⊥j

(2)
)
Sj

]2

. (19)

To ensure that the error is equally distributed, the permissible value of the

3 In all examples presented here we use the MPDATA infinite gauge option for
which K = 2 by design; cf. section 5.1 in [42].
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overall error for the computational domain is prescribed following [59], as

em = η

(
1

N

N∑
i=1

ψ̃(2)ψ̃(2)

)1/2

(20)

where η is a desired specified percentage error (in this paper η = 0.05 was
used), and N is the number of nodes in the primary mesh. Following the
remarks in [60], we note that a loose interpretation of (18) is that it aims at
achieving a specific percentage error in a global norm by approximately aiming
at the RMS value of truncation error being some specified fraction of the RMS
value of the exact solution approximated here by ψ̃(2). A more intuitive use
of the error density, in (20), has been studied in [30] and reported to be less
effective.

The above procedure determines the magnitude of error indicator εi in every
node of the initial mesh and allows to specify the desired size of new mesh
resolution according to

δxnewi = δznewi = δxoldi /εi . (21)

Additionally, we impose practical upper and lower bounds on δxnewi and δznewi .
In our implementation, a new dual mesh is generated from a triangular pri-
mary mesh obtained by means of the advancing front technique with the mesh
resolution controlled in the background mesh according to (21).

The adopted mesh refinement approach aims for an optimal mesh with the
error similar in every cell; however, the construction of the error indicator is
by no means unique. Various combinations of the auxiliary variables ψ̃ in (1)
and their corresponding truncation errors were explored in this study for their
use in the error indicator. For the gravity wave problems addressed here the
best candidate found is the vertical velocity component — unsurprisingly, as
it is the dependent variable that directly reflects nonhydrostacy of stratified
flows. We have also explored substituting (19) with the norm emphasising the
solution error, rather than the error flux,

(‖ e ‖i)2 =
l(i)∑
j=1

0.25
(
δψ̃

(1)
i + δψ̃

(1)
j

)2
, (22)

where δψ̃ is a shorthand for the second term on the rhs of (12). However, for the
applications addressed, this indicator was causing minor local over-refinement
that had to be moderated by adjusting the specified percentage error in (20).
The impact of using (22) instead of (19) was consequently overshadowed by
the related amendments to the specified percentage error, and in practice the
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error indicator (19) produced slightly better quality of meshes with smoother
changes in spatial resolution.

3.3 Static mesh refinement for a two-scale mountain wave

The slab-symmetric benchmark problem of Schär et al [34] is used to demon-
strate the implementation of MPDATA based error indicator and mesh adap-
tivity. The problem is designed to expose issues of horizontal resolution re-
quirements for adequate geometrical representation of small scale topography.
The selected problem parameters favour bifurcation into a qualitatively in-
correct solution. The benchmark consists of an anelastic flow past a terrain
profile under stably stratified atmospheric conditions, as described in [56] while
following [34,20]. The terrain profile is Gaussian with superposed small-scale
structure,

zs(x) = zs0 exp

(
−x2

a2

)
cos2

(
πx

λ

)
, (23)

where zs0 = 0.25 km, a = 5 km and λ = 4 km. The buoyancy frequency
N = 0.01s−1; the ambient wind profile ue = U = 10 ms−1 and ve = we = 0;
the computational domain is 70 × 21 km and the simulation time 5 hours.
The upper 11 km of the model domain is designated as an absorbing layer,
to simulate an infinite atmosphere and to suppress spurious wave reflection
from the upper rigid-lid. Lateral absorbers extend for 10 km away from the
boundaries.

The solution of the anelastic system (1) is obtained using the NFT model out-
lined in section 2. The initial flow is potential, determined by mass continuity
and the boundary conditions. The lower boundary is impermeable, whereas
at the top and the lateral boundaries (u − ue) · n = 0 is assumed; n is the
outward unit normal to the model boundaries. The gravity-wave absorbers
near the lateral and upper boundaries attenuate the solution towards environ-
mental conditions with the inverse time scale α that increases linearly from
α = 0 at the distance 10 and 11 km from the lateral and the upper bound-
ary, respectively, to α = 1200−1s−1 at the boundaries. While in this work
meshes conforming to the physical topography are investigated, in [34,20,56]
the terrain-following coordinate transformations were studied.

The procedure outlined in section 3.2 is used to design an adequately refined
mesh. In order to show that the static adaptivity can combine information
obtained from various types of meshes, we generate the initial solution on a
purposely coarse 81× 46 structured mesh shown in Fig. 3. The resulting hor-
izontal and vertical resolutions δx = 875 m and δz ≈ 467 m are, respectively,
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Fig. 3. Coarse structured mesh with underresolved topography (left panel), zoomed
near the hill (right panel)

1.75 and 1.5 times larger than the increments used in the earlier works [34,56].
The mesh conforms to the terrain geometry and is constructed to mimic the
standard Gal-Chen & Somerville [13] terrain-following coordinates [44]. The
resulting vertical velocity field, Fig. 4 left panel, evinces the characteristic
spurious influence of the small-scale (nonhydrostatic) evanescent component
of the solution on the large-scale hydrostatic-wave component characterised
by deep propagation. However, these spurious effects are distinctively weaker
than those shown in the corresponding Fig. 13a of [34], despite much coarser
mesh used here. Interestingly, the result highlights different mechanisms in
which too-coarse meshes can affect the solution. In this work the coarse mesh
has too few nodes to adequately conform to the smooth geometry of the hill,
as seen in the right panel of Fig. 3. The sharp changes in the lower boundary
of the mesh give rise to the spurious flow features, but are relatively local.
However, as shown in [34], in some methods relying on the coordinate trans-
formation the spurious effects resulting from the inadequate representation
of topography can propagate aloft. Nonetheless, the initial solution obtained
even on such a coarse mesh carries sufficient information for the error indicator
(18) to guide mesh refinement.

Fig. 4. Steady-state vertical velocity for the coarse structured mesh (left panel)
and for the refined unstructured mesh; the contour interval is 0.05 ms−1 and zero
contour lines are not shown.
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Fig. 5. Refined unstructured mesh; primary (left panel), dual (right panel).

In principle, the initial mesh could be used directly as a background mesh,
however for a good quality of meshes it is usually beneficial when the back-
ground mesh is coarser than the initial mesh. Therefore, we generate a suitable
alternative background mesh, consisting of larger triangular elements and in-
terpolate linearly the desired new mesh resolution (δx and δz) to its nodes.
Subsequently, the advancing front technique is employed for generating a new
primary triangular mesh with the background spacing ranging from 170 to
3600 m, shown in the left panel of Fig. 5, for which the corresponding dual
mesh is shown in the right panel. As anticipated, the areas of finer mesh
are present where the topography changes more rapidly and in the main wave
train. In contrast, the mesh coarsens in the areas of smooth flow and absorbing
boundaries. The right panel of Fig. 4 shows the corresponding vertical velocity
field obtained with the adapted mesh. The new solution is obtained on a mesh
containing 8830 nodes and is in agreement with the reference solution [34] and
other published results [56] that used 10,011 grid points. Interestingly, the ini-
tial solution (not shown) obtained from a similarly coarse mesh but built on
a base of a triangular primary mesh, results in similar adapted meshes and
nearly identical final solution.

The solution obtained on the initial grid, containing 3726 nodes, used 1800
time steps with a constant interval δt = 10 s, including computation of all
geometrical metrics required by the dual mesh. The elliptic solver used on
average six iterations (viz. evaluations of the generalised Poisson operator on
the lhs of eq. 11) per time step, to reach ε =‖ (δt/ρo)∇ · (uρo) ‖∞< 10−5

convergence threshold, five orders of magnitude smaller than the maximal
Courant number; see [38] for a discussion. 4 The consumed CPU time was
68 s. The corresponding solution on the adapted mesh containing 8830 nodes
used 6000 time steps with δt = 3 s and four elliptic-solver iterations per time
step, and took 464 s of CPU time.

4 The same accuracy threshold was prescribed in all examples presented in this
paper, and all computations were conducted in single precision on a single Intel R©
i7-975 processor.
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Table 1
Two-scale mountain wave; the resolution ratios for consecutive meshes are shown
together with the corresponding ratios of the solution error norms.

δxk/δxk+1 21/2/20 20/2−1/2 2−1/2/2−2/2 2−2/2/2−3/2

L2(v′k)/L2(v′k+1) 1.88 1.98 1.96 1.98

Table 1 summarises the mesh convergence study on the sequence of meshes
following a pattern of the adapted mesh in Fig. 5. In the absence of the ex-
act solution, a numerical result obtained on a fine triangular mesh, consisting
of 132307 nodes and having a minimum spatial resolution δxmin = 60.12 m,
is taken as a reference. The meshes are generated by decreasing all specified
background spatial resolutions by

√
2. Therefore, in the mesh generation each

specified background mesh spacing is decreased according to δxk = 2−k/2δx0,
k = −1, 0, .., 3; where δx0 is a corresponding prescribed spacing in the adapted
mesh, consisting of 8830 nodes and having a minimum spatial resolution of
δxmin = 170.04 m. The high-resolution reference mesh corresponds to k = 4,
and δxk = δzk, ∀k. Table 1 shows ratios of the error norms for the fields of
velocity magnitude ‖ v′k ‖ / ‖ v′k+1 ‖ in function of the ratio of consecutive
mesh resolutions δxk/δxk+1; primes mark deviations from the reference re-
sult (k = 4) interpolated linearly to a given mesh. The time interval δt and
the number of time steps were adjusted accordingly, to keep the simulated
time (5 h) fixed. The near second-order asymptotic convergence rate is evi-
dent in the table. Noteworthy, the solution on the k = 0 mesh (4551 nodes,
δxmin = 240.47 m) already deteriorates due the impaired representation of the
hills geometry, although not as severely as for the coarse mesh in figure 3. Fur-
thermore, the number of nodes in the consecutive meshes only approximately
double, and all solutions needed to be interpolated between meshes, as none
of their nodes coincide.

4 Tetrahedral meshes; simulation of strongly stratified flow past a
steep isolated hill

In contrast to modelling engineering flows, where simulations on tetrahedral
and related meshes have achieved a high degree of maturity, their applicabil-
ity to atmospheric flows is still being explored. While prismatic meshes are
ideally suited for global models — for which the (relatively) thin atmosphere
imposes stringent constraints on the design of numerical models — the un-
structured tetrahedral discretisation can benefit small- and mesoscale models.
For example, applications involving terrain so complex as caves and canyons
cannot be easily resolved with continuous mappings. Moreover, as the tetra-
hedral discretisation provides means for accommodating irregular interfaces,
it provides new avenues for study of cloud physics. On the other hand, at-
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mospheric flow simulations pose new challenges for tetrahedral discretisation,
because the underlying hydrostatic balance and physics (e.g., rainfall and radi-
ation) are predominantly ordered in the vertical direction. Here, we probe the
accuracy of tetrahedral discretisation against prismatic and Cartesian meshes,
in the context of strongly stratified flow past a steep 3D mountain. For this
purpose, we adopt the canonical problem of a low-Froude number flow past
an axially-symmetric hill [18,11,37], simulated in [45] on dual meshes derived
from structured and prismatic primary meshes.

Fig. 6. The central, y = 0, vertical cross-section (top) of the tetrahedral mesh;
the nearby mesh points are projected on the cross-section for visualisation. The
horizontal cross-section (bottom) of the mesh at the elevation z = (1/3)h0.

The cosine hill defined as

h(x, y) =h0 cos2(πr/2L) if r = ((x− x0)2 + (y − y0)2)1/2 ≤ L (24)

h(x, y) = 0 otherwise ,

where the half-width L = 3000 m and height h0 = 1500 m, is centred at the
bottom of the computational domain. The domain size is 5L×4L×2L in x, y
and z directions, respectively. Two primary meshes consisting of tetrahedral
elements were generated in the domain. The first one (not shown) using a
uniform background point spacing of δx = δy = δz = 120 m giving 1945090 of
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the total number of points, and the second one with the varying point spacing.
Figure 6 shows two cross-sections of the primary mesh that consists of 337510
points and uses varying resolution ranging from 450 m at the boundaries
to about 100 m in the hill’s vicinity. The number of points in the varying
resolution tetrahedral mesh is not only substantially lower than in the constant
resolution tetrahedral mesh but also lower than in the prismatic (refined in the
horizontal only) and Cartesian meshes used for this problem in [45]. In order
to produce solutions of matching quality, those meshes consisted of 692533
and 1121812 computational points respectively.

Fig. 7. Fr = 1/3 flow solution after two advective time scales T = L/U . Contours of
vertical velocity in central xz cross section y = 0 (top) and in the xy cross-section at
z = h0/3 (bottom). The contour interval is 0.5 ms−1, and positive/negative contours
are presented with solid/dashed lines; the zero contours are not displayed.

The governing equations (1) assume Boussinesq limit, with the constant po-
tential temperature of the reference state Θo = 300K and the ambient state
characterised by constant buoyancy frequency N = 10−2s−1 and uniform wind
U = 5 ms−1. With the specified hill geometry, the ambient conditions result
in a low Froude number, Fr = U/Nh0 = 1/3, flow. Because h0/L ∼ O(1),
the problem is essentially nonhydrostatic and can be compared to experimen-
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tal results given in [18]. All results are shown after two advective time scales
T = L/U (t = 1200s) when the main features of the solution are already
established. The initial condition is provided by the solution of the poten-
tial flow problem, with a gradient of the potential perturbation imposed on
the ambient wind. While the boundary conditions are rigid in x, y and z,
the gravity-wave absorbers near the upper and lateral streamwise boundaries
attenuate the solution toward ambient profiles with absorbing coefficient in-
creasing linearly from zero at the distance L/2 from the boundary to 150−1 s−1

at the boundary.

Fig. 8. As in the bottom panel of Fig. 7 but at z = (5/3)h0 horizontal cross-section.

The flow patterns displayed in figures 7 and 8 are computed for the varying
resolution mesh. 5 They show key features of a low Froude number flow, in-
cluding the characteristic separation and reversal of the lower upwind stream,
and the formation of intense vertically-oriented vortices on the lee side of the
hill [18,37,11], with the flow aloft transitioning to the linear gravity wave re-
sponse [35]. In Figure 7, in the central xz cross-section at y = 0, a turbulent
wake is formed in the lee-side of the hill and characteristic gravity waves re-
sponse is visible above the wake. This result matches closely the reference
solution obtained on structured and prismatic meshes (upper panels in Figs. 6
and 8 in [45]). Figure 7, in xy cross-section at z = (1/3)h0 = 500 m, presents
a pair of eddies behind the hill, showing the intrinsic three-dimensionality of
the lee-side flow. In brief, the reason of this flow structure is that the incoming
flow up to zc ≈ (1−Fr)h0 — the so called dividing streamline [18] — is forced

5 For plotting purposes in all 3D experiments, scalar fields are interpolated linearly
to 2D Cartesian grids placed on the cross sectional planes cutting through the 3D
fields.
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to deflect and split around to the hill as it lacks sufficient kinetic energy to
go over the hill. Above the dividing streamline the hill is sufficiently low for
the flow to go over, thus resulting the characteristic gravity response aloft.
Figure 8 shows the horizontal structure of the gravity wave for the xy cross-
section at z = (5/3)h0 = 2500 m. The corresponding solutions for the regular
tetrahedral mesh are not shown, because their departures from the results in
Figs. 7 and 8 are insignificant. The two horizontal flow patterns also compare
well with the reference results in [45].

The statistics of the results are presented in Tables 2 and 3 for the tetrahedral
meshes with constant and varying resolution, respectively. In the tables, the
units of the three velocity components are in ms−1 and the potential temper-
ature in K. The statistics of Θ′ are converted to the vertical displacements of
isentropes using a crude approximation

ηz ≈ −Θ′
g

N2Θo

≈ −333 Θ′ m . (25)

The statistics of dependent-variable fluctuations about the ambient state are
evaluated over the entire computational domain. The irregularity of the mesh
is taken into account when calculating the averages and standard deviations
of the fluctuations. With ϑi denoting the cell volume surrounding mesh point
i, the average values ψ′ are calculated according to

ψ′ =

n∑
i=1

(ψ′iϑi)

n∑
i=1

ϑi
, (26)

and the corresponding standard deviations σψ′ are calculated as

σψ′ =

n∑
i=1

(
(ψ′i − ψ′)2ϑi

)
n∑
i=1

ϑi
, (27)

where n denotes the total number of nodes in the domain. The statistics for
the two tetrahedral meshes as well as those provided for the refined prismatic
mesh (Table 2 in [45]) are in close agreement. 6

The solution obtained on the mesh with varying resolution, containing 337510
nodes, used 960 time steps with a constant δt = 1.25 s and required 14 it-
erations of the elliptic solver per time step. The resulting CPU time of the
Intel processor (recall footnote 4) was 15204 s. The corresponding solution on

6 The ue = 5 ms−1 was not subtracted from the values of u given in [45].
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Variable Maximum Minimum Average Standard Deviation

u′ 3.51 -11.39 0.06 0.76

v′ 8.04 -8.48 4.7× 10−6 0.47

w′ 5.35 -4.80 −1.02× 10−4 0.36

Θ′ 2.85 -1.48 −4.7× 10−3 0.20

η′ -949 493 1.57 66.6

Table 2
Fluctuations’ statistics on a tetrahedral mesh with constant resolution

Variable Maximum Minimum Average Standard Deviation

u′ 3.42 -11.33 0.06 0.78

v′ 8.42 -8.26 1.93× 10−6 0.48

w′ 5.56 -4.76 −6.40× 10−5 0.36

Θ′ 2.93 -1.52 −6.99× 10−3 0.20

η′ -976 506 2.33 66.6

Table 3
Fluctuation’s statistics on a tetrahedral mesh with varying resolution

the regular tetrahedral mesh, containing 1945090 nodes, used the same time
interval and the same number of the elliptic solver iterations, but it required
87713 s of CPU time. Computations using the same model and time interval
were repeated with identical Cartesian and prismatic meshes to those used in
[45] and showed that CPU time changes almost proportionally to the number
of nodes in a mesh, for all types of investigated meshes. This was expected
since all these meshes have a similar average number of edges per node. A fur-
ther assessment of the overall economy of models using i, j, k and edge-based
data structures, for this particular benchmark, is included in [45].

5 Meshes with highly variable resolution; simulation of critical-
level orographic flows

Sections 3 and 4 examined the efficacy of variable-resolution flexible meshes
for simulating orographically forced gravity-wave response in canonical media
with uniform wind and constant stratification. However, in the atmosphere,
wind and stratification generally vary with height, and this can profoundly
affect the response. This is particularly evident for ambient flows with critical
levels, identified by the horizontal wave phase speed equal to the ambient ve-
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locity component in the direction of the wave propagation. In steady mountain
waves like those discussed in sections 3 and 4 the phase speed is zero, so the
critical level is where the ambient wind vanishes. The influence of the critical
levels on the gravity waves propagation is widely discussed in the literature;
see [2,9,28,16,8,57] and references therein. Theoretically, as the wave packet
approaches a critical level the group velocity and the vertical wavelength tend
to zero, while the horizontal velocity grows unboundedly, and the effective
wave absorption occurs below the critical level (i.e., within the critical layer).
This singularity of the linear predictions indicates that processes acting on
small scales become important in critical layers; in particular, the nonlinear
steepening and overturning of the waves. In 3D, this is a challenge for struc-
tured grids, which require uniformly high resolution to gain insights into the
morphology of critical layers.

Here, the anelastic equations (1) are integrated on highly anisotropic and
inhomogeneous mesh with high resolution concentrated in a small portion of
the computational domain. The geometry of the problem and flow conditions
are selected to reproduce the numerical experiment defined in [16]. The domain
is 100× 100× 3 km3, with an axially symmetric mountain

h(r) = h0

(
1 +

r2

a2

)−3/2

, r ≡
√
x2 + y2, (28)

centred at the bottom of the domain. The ambient velocity profile with a
reverse linear shear is defined as

U(z) = U0

(
1− z

zc

)
, (29)

where zc denotes the altitude of the critical level. Free-slip impermeable bound-
ary conditions are applied at the vertical and spanwise lateral boundaries. At
the streamwise lateral boundaries the ambient profile is assumed. The absorb-
ing layers are employed in the vicinity of the upper and streamwise lateral
boundaries with respective thickness of 1 and 10 km. The inverse timescale of
the absorbers is 150−1s−1 at the boundaries.

For this problem we employ a primary unstructured mesh built from distorted
prisms with triangular bases. This is because the computational domain is rel-
atively thin in the vertical, and the use of prismatic mesh allows a considerably
finer resolution in the vertical direction. To construct such a mesh, firstly, a
planar triangular mesh is generated that defines the x and y coordinates for
all nodes. Secondly, the layers of prisms are stack in the vertical, such that
the vertical position of the node is specified as

z̃i,k = z̃i,k−1 + δz̃k . (30)
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Here, i = 1, 15059 numbers the nodes in each prismatic layer, k = 1, 70 num-
bers the layers, z̃i,k is the height of the layer with respect to the flat bottom,
δz̃k is the increment of the kth layer, with z̃i,0 = 0 and δz̃1 = 0. Finally, the
layers are elevated according to the shape of the mountain by displacing z co-
ordinate of the mesh to mimic the terrain-following coordinate transformation
[13,56]

zi,k = z̃i,k

(
1− hi

H

)
+ hi , (31)

where hi is the height of the mountain at the ith node in each layer and
H = 3 km is the top of the model domain. The horizontal grid size is ap-
proximately 150 m in the vicinity of the hill and gradually grows larger to be
around 3.5 km near the boundary of the domain. To ensure adequate geometry
representation, a finer point resolution is applied where the mountain slope
is higher. The vertical increment (δz̃k) grows gradually from 30 m close to or
below the critical level to 100 m near the top of the domain. Figures 9 and 10
show, respectively, a representative primary surface mesh for the lateral and
top surfaces of the model the domain, and a fragment of the bottom-surface
mesh conforming to the hill.

Fig. 9. The surface mesh of the prismatic volumetric mesh.

Following [16], the ground-level wind speed U0 = 10 ms−1, the buoyancy fre-
quency N = 0.01 s−1, the half-width of the hill a = 5000 m, and the position of
the critical level zc = 1000 m. Consequently, the ratio of the horizontal to the
vertical wave number of the hydrostatic mountain wave forced by the hill is
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Fig. 10. A zoomed fragment of the horizontal triangular surface mesh at the bottom
of the domain.

Experiment Ri ĥ D/D0(6) D/D0(10) D/D0(18)

LS2 (linear) 1 0.05 0.923 0.954 0.997

LS3 (nonlinear) 1 0.1 0.983 1.02 1.160

LS4 (nonlinear) 1 0.2 1.04 1.15 1.26

LS5 (nonlinear) 1 0.3 1.09 1.22 1.23

Table 4
Parameters of the selected numerical experiments, LS2-LS5 after [16].

U0/Na = 0.2 and the Richardson number Ri = (Nzc/U0)2 = 1. The ambient
shear flow is thus hydrostatic and stable. Four key benchmarks for different
mountain heights have been selected from those studied in [16]: their LS2 for
a linear case; and LS3, LS4 and LS5 for nonlinear cases. The term ”linear” or
”nonlinear” is read from Fig. 8 in [16]. The magnitudes of a nondimensional
mountain height ĥ = h0N/U0 (viz. the inverse Froude number) are specified
by varying h0. All four experiments summarised in Table 4 were run until the
dimensionless time T = tU0/a = 18. The mountain wave drag D(T ) is calcu-
lated numerically as D = −

∫
Γ p
′ nxdS, where Γ denotes the mountain surface,

and nx is the x component of the unit vector normal to Γ. The numerical
drag D, listed in the table at T = 6, 10 and 18, is normalised by the analytic
hydrostatic drag for uniform ambient flow, D0 = π

4
ρ0NU0ah

2
0 [35].

Figure 11 shows the histories of normalised drag, corresponding to those in
Fig. 9 of [16] for the LS2-LS5 experiments. It should be noted that in [16]
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Fig. 11. Normalised drag history. The linear case is shown in solid line, while non-
linear cases are in dashed lines.

all experiments were initialised by growing the mountain gradually over the
first T = 8 time units; whereas in the present study, the initial conditions
assume ambient wind with a potential perturbation imposed to satisfy the
mass continuity equation in (1) together with the boundary conditions on the
fixed full-size mountain. In consequence, our results are substantially advanced
in the dimensionless time compared to [16], and the details of this advancement
depend on the hill size. These are of minor importance for the linear case that
approaches a steady state, but are more consequential for the nonlinear cases
that depart steadily from the linear results. Overall, the drag histories in
Fig. 11 reproduce the dependence of the drag on the amplitude of the lower-
boundary forcing reported in [16].

Figure 12 shows the isentropes in the y = 0 vertical plane at T = 6 for LS2-LS5
experiments. These solutions compare well with Fig. 13(a) and Figs. 16(a), (c),
(d) at T = 18 in [16]. As anticipated, they show that there is no significant
propagation of the wave energy throughout the critical level. Furthermore, for
sufficiently large amplitude of incoming waves nonlinearity dominates viscous
(ILES) processes in the layer. This results in the wave steepening and over-
turning beneath the critical layer. However, the flow below the critical layer
remains essentially decoupled from the flow aloft. Figure 13 highlights the de-
pendence of the solution on the magnitude of the lower boundary forcing and
time; it corresponds to Fig. 12 with the results displayed at the later time
T = 18. Comparing the corresponding panels in Figs. 13 and 12 shows that
the flow stability diminishes with increasing amplitude of the mountain wave.
Furthermore, it demonstrates that given a sufficiently long time and low vis-
cosity even the ”linear” wave overturns right beneath the critical layer. The
top two panels in Fig. 13 show solutions qualitatively similar to their earlier
forms, with the one on the right transitioning to turbulence but still decoupled
from the flow aloft. This is corroborated in Fig. 14 that complements these two
panels with the display of streamlines that capture the characteristic Kelvin’s
”cat’s eye” circulation [28] in LS2 run but becoming irregular in LS3 exper-
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Fig. 12. Isentropes at T=6 in y = 0 vertical plane for experiments LS2 (left, top),
LS3 (right, top), LS4 (left, bottom) and LS5 (right, bottom).

iment. In contrast, the two bottom panels of Fig. 13 already evince massive
wave breaking with turbulent flow in the lee and evanescent perturbations,
excited by convective eddies, penetrating through the critical layer. Notably,
these results may be viewed as a 3D paraphrases of the 2D flow discussed in
section 5 of [43].

At the first glance, the physical content of the two bottom panels of Fig. 13
may seem obscured by the noisy appearance of the isentropes. However, this
is merely an illusion due the heavily distorted display of the of the 80x2 km2

vertical plane, in which these fine-scale features are resolved with 33 cells per
5 km of the horizontal distance. For substantiation, Fig. 15 shows a small,
properly scaled fragment of the the right bottom panel of Fig. 13. Figure 16
shows a fragment of the isentropic surface, 7 defined by its undisturbed height
z = 0.94zc, at the dimensionless times T = 6 and 18 for the LS5 experiment.
At T = 6, the top panel of Fig. 16 roughly corresponds to the first isentrope
beneath z = 1 km in the bottom-right panel of Fig. 12. It supplements the
latter with a highlight of the 3D structure of the overturning mountain wave.
At T = 18, the lower panel of Fig. 16 evinces an abundance of fine scale fea-
tures reflecting convective eddies in the turbulent wake forming in the lee; cf.
Fig. 15 for an undistorted display. This nature of the solution substantiates
two important aspects of this work. First, it attests to the utility of the flexible

7 The image is distorted, with displayed length across the diagonal and the vertical
depth of about 40 km and 0.25 km, respectively.
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Fig. 13. As in Fig. 12 but at T=18.
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Fig. 14. Streamline corresponding to the isentrope display in the upper two panels
of Fig. 13.
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Fig. 15. A zoomed fragment of the isentrope display in the lower left panel of Fig. 13.

meshing admitting highly anisotropic and inhomogeneous varying resolution
in regions of interest. Second, it illustrates the utility of ILES approach as-
suring nonlinearly stable solutions on variable meshes without the need for
explicit subgrid-scale (SGS) models. Noteworthy, high resolution is required
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Fig. 16. A fragment of the isentrope with undisturbed height z = 0.94zc at T = 6
(top) and T = 18 (bottom) for the run LS5.

to capture intermittent turbulence in the lee of the mountain, but variable
resolution complicates explicit SGS modelling already at the theoretical level
[27]. In contrast, ILES naturally selects the variable filter size and imposes no
dissipative stability constraints controlled by the square of the local resolution.

The computations presented in this section typically required 10 iterations of
the elliptic solver per time step and 20924 s of the Intel processor CPU time
per 1000 time steps.

6 Conclusions

A methodical study has been summarised that explores the flexibility and
practicality of the finite volume discretisation operating on fully unstructured
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and adaptive meshes with the efficient edge-based data structure. The perfor-
mance and potential of such meshes for modelling stably-stratified nonhydro-
static atmospheric flows past complex terrain were illustrated and quantified
with challenging numerical simulations. In particular, 3D simulations of intri-
cate nonlinear flows with a range of emerging scales were selected to probe
the accuracy of finite volume discretisations on highly anisotropic and inho-
mogeneous meshes.

The limited-area nonhydrostatic nonoscillatory forward-in-time (NFT) model
[45] has been extended with specialised static-mesh-adaptivity approach com-
patible with the model numerics. Namely, the error indicators for mesh re-
finement exploit inherent properties of the iterative MPDATA methods that
underlie the model NFT integrators and as such impose minor computational
complexity and overhead. Illustrative simulations using the static adaptivity
for a challenging benchmark of a 2D stratified flow past a two-scale mountain
[34] proved the approach sound and exemplified the potential for an auto-
mated generation of meshes with nodes distribution optimised to reflect flow
features and the geometry of topography. The issue of small-scale topography
and associated grid transformations is gaining importance due to the contin-
ued increase in horizontal resolution of operational weather prediction and
climate models. This makes the options for complementary solutions using
flexible meshing and alternative geometry representations attractive.

The successful validation of the NFT MPDATA model has been further ex-
tended to meshes constructed from the irregular tetrahedral primary grids.
The presented results for intricate strongly stratified flow past a steep iso-
lated hill [18] confirm that the approach performs well for arbitrary shaped
meshes. Furthermore, the obtained results match the accuracy attainable on
Cartesian grids and prismatic unstructured (in the horizontal) meshes with a
similar spatial resolution. Last but not least, special attention has been given
to simulations of complex anisotropic and inhomogeneous flows with a range
of scales emerging intermittently in the course of the simulations. Numerical
study of such flows can clearly benefit from highly anisotropic and inhomoge-
neous meshes conforming to the nature of the flow. Our simulations of sheared
stratified 3D orographic flows with critical-level [16] document good accuracy
offered by, while illustrating cognitive benefits of, prismatic unstructured-mesh
discretisation with high degree of the mesh variability.

Similarly like in engineering, a mesh type preference for atmospheric flows
depends on the specific problem and the modeller’s focus of interest. A fully
unstructured mesh generation is more involved than a straightforward spec-
ification of a regular Cartesian grid. However, an automatic procedure for
an unstructured mesh generation can be established and made user friendly
for a given class of problems and a subsequent routine usage. The required
skill and effort would naturally increase for unstructured mesh generation in
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solutions of new problems and research studies that involve extensive experi-
mentation with optimal mesh resolution. Interestingly, because finite-volume
models capable of producing quality solutions on unstructured meshes can
also be run on regular grids [52,44], variable mesh resolution only adds value
to computational meteorology at a moderate price. Following experience from
other fields, new capabilities offered by unstructured-mesh methods are likely
to complement rather than replace established atmospheric models operating
on regular grids.
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