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bLaboratoire AIM Paris-Saclay, CEA/DSM Université Paris-Diderot CNRS, IFRU/SAp, F-91191 Gif-sur-Yvette, France.

cEuropean Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK

Abstract

The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety
of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and
dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical
schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears
today mandatory to assess their robustness with respect to the details of the numerics, and in particular to
the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models,
the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme,
while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize
the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each
resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the
derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale
flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in
the magnetohydrodynamic regime for various dynamo solutions.
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1. Introduction

Cool stars are known to possess a substantial con-
vection zone forming their outer layer. The con-
vective motions participate in the self-organization
of the interior of the star and in particular in the
sustainment of a large scale differential rotation
(e.g. Brun and Toomre 2002; Featherstone and Mi-
esch 2015, and references therein), and a potentially
cyclic magnetism (e.g. Ghizaru et al. 2010; Käpylä
et al. 2012; Augustson et al. 2015; Brun et al. 2015,
and references therein). Understanding the proper-
ties of solar and stellar convection is hence of prior
importance to understand the joint evolution of the
stellar rotation rate and large-scale magnetic fields
along the Main Sequence.

Thanks to helioseismology (Christensen-
Dalsgaard et al. 1991; Basu 1997), we know
that the solar stratification is close to adiabatic
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down to 0.71 solar radii, leaving little doubt
that convective motions extend down to such
depths. However, the amplitude of these deep
convective flows in the Sun is today the subject
of a stimulating controversy. Using time-distance
helioseismology, Hanasoge et al. (2010, 2012)
obtained surprisingly low upper-limits (< 100 cm/s
at depth 30 Mm) for the large-scale convection
motions in the solar convection zone. It is a pos-
sibility that solar convection models over-estimate
by a few orders of magnitude the deep convective
flow. For instance, an inadequate cut in the
turbulent scales due to finite numerical resolution
alters the spectral repartition of energy and hence
may lead to incorrect estimates of the large-scale
convective flows. Another related possibility is
that convection may actually be driven by the
strong cooling layer at the solar surface (Spruit
1997), through the so-called entropy rain of small
turbulent scales. On the other hand, more recent
observational results using ring-diagram analysis
were recently obtained by Greer et al. (2015), who
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found convective flows two orders of magnitude
faster than Hanasoge et al. (2010) at depth 30 Mm.
More cross-comparisons between helioseismology
techniques used to estimate convective flows in the
Sun are today needed to carefully pin down those
observational constraints.

There is yet a somewhat more fundamental is-
sue regarding our understanding of stellar convec-
tive turbulence, disregarding temporarily the ex-
act mechanism exciting it. Stellar interiors are
mainly composed of stratified, fully ionized hydro-
gen which can be modelled as a one-fluid plasma
under the magnetohydrodynamic (MHD) approx-
imation (which is essentially composed of a form
of the Navier-Stokes equations combined with the
heat transport equation and coupled to an induc-
tion equation). The microscopic dissipation capa-
bilities of the stellar plasma are relatively low: in
the Sun, the microscopic viscosity in the convection
zone typically lies in the [1, 102] cm2/s range (see,
e.g., Miesch 2005). Considering the lowest large-
scale convective velocities estimates from Hanasoge
et al. (2012) (v ' [102, 103] cm/s), and a typical
solar convection zone depth d ' 0.3R�, the typical
Reynolds number of the large-scale flows in the so-
lar convection zone is at the very least Re = vd/ν &
1010. Such a tremendously high Reynolds number
is, for the time being, unfortunately inaccessible to
both numerical simulations and laboratory experi-
ments. As a result, the spectral repartition of en-
ergy (large-scales vs small-scales, direct vs inverse
cascades of energy) in the solar convection zone is
today unknown. The microscopic Prandtl number
in the solar convection zone (Pr = ν/κ . 10−3) is
furthermore very challenging to reach with current
numerical simulations, since it implies a difference
of at least three orders of magnitude for viscous and
heat dissipation time-scales. Finally, stellar con-
vection zones are also magnetized and are thought
to generally support dynamo action, making their
theoretical and numerical modelling an outstanding
challenge.

In order to approach the extreme parameters of
solar (and more generally stellar) convection, which
are unreachable with present computational power,
various numerical simulation techniques have been
developed. Two complementary paths can gener-
ally be followed. First, numerical simulations can
be designed on localized, small portions of the solar
convection zone (e.g. Rempel and Cheung 2014; Ki-
tiashvili et al. 2015, and references therein). Even
with this approach, solar parameters are extremely

hard to achieve. Furthermore, the problem is trun-
cated at the largest scales (due to the small box
extent) and hence cannot address the important is-
sue of large-scale convective motions and the sus-
tainment of differential rotation or large-scale mag-
netism. A second path may thus be followed,
where the global convection zone is modelled but
the small-scales are parametrized. Both paths fol-
low the general approach of large-eddy simulations
(LES), on which we will focus in this work.

The simplest parametrization of sub-grid scales
(SGS) consists in modelling their effects as en-
hanced viscosity and heat diffusivity. This ap-
proach has the advantage of giving the modeller
full control on the sub-grid scales model, but lacks
a physical justification in the context of solar (and
stellar) convection. In contrast to classical turbu-
lence, an inertial range for convective turbulence
can be defined as the range of scales where the
non-linear, local advective energy transport bal-
ances the buoyancy source of convection or the tur-
bulent pressure gradient (see, e.g., Bolgiano 1959;
Rincon 2006). If the smallest resolved scales of
the LES model lie within this modified inertial
range of the turbulent spectrum, the so-called dy-
namic Smagorinsky procedure (see Smagorinsky
1963; Germano et al. 1991) can be used to mimic
a given self-similar spectrum for the smallest re-
solved scales of the model (see Nelson et al. 2013
for an implementation of such a method in the con-
text of solar convection). Finally, another approach
has been pursued with the so-called implicit-LES
(ILES) methods. Indeed, no physically-rooted SGS
model of the full MHD equations exists today (for
recent advances in this direction, see Yokoi 2013;
Chernyshov et al. 2014). A pragmatic approach can
hence consist in minimizing (e.g. down to the nu-
merical stability limit) the effect of the unresolved
scales on the scales resolved by the model. The ad-
vantage of this method is that it ensures that the
effect of sub-grid scales is minimized for a given grid
size. However, the SGS model is fully subsumed by
the numerical method, and its role in the develop-
ment of the large scales is, unlike for explicit LES,
non-trivial to estimate a posteriori.

The aim of this work is to compare comprehen-
sively the ILES and LES modelling techniques for
an idealized turbulent convection zone. We design a
turbulent convection zone simulation based on the
anelastic benchmark of Jones et al. (2011). We use
the EULAG code (Prusa et al. 2008) to compute
ILES based on the MPDATA algorithm (see, e.g.
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Smolarkiewicz and Charbonneau 2013), and use the
ASH code (Clune et al. 1999; Miesch et al. 2000;
Brun et al. 2004) to compute the LES counterparts.
In a pioneering work, Elliott and Smolarkiewicz
(2002) first attempted to reconcile empirically sim-
ulations of convective turbulence carried with LES
and ILES. Here, we quantify the dissipation of the
ILES with an original analysis of the energy trans-
fers in spectral space. We show that the effect of
the SGS modelling in the ILES can be interpreted
in terms of enhanced viscosity and diffusivity oper-
ators similar to LES.

The paper is organized as follows. The set of
anelastic equations used to describe convective tur-
bulence in stars is given in Section 2, along with
a description of the two numerical codes (EULAG
and ASH) used in this work. A fiducial convective
turbulence simulation in spherical geometry with
the EULAG code is presented in Section 3. In Sec-
tion 4, we develop an original method based on en-
ergy transfers in the spectral spherical harmonics
space to estimate effective dissipation coefficients.
These coefficients are then used in an ASH LES
that satisfyingly mimics the EULAG ILES (Section
4.3). We finally conclude and summarize our results
in Section 5.

2. Modelling stellar deep convection

2.1. Formulation of the anelastic equations

The equations solved by ASH and EULAG are
the Lantz-Braginsky-Roberts (LBR, see Lantz and
Fan 1999; Braginsky and Roberts 1995) —or, equiv-
alently, the Lipps-Hemler (Lipps and Hemler 1982,
1985)— set of anelastic equations (see Vasil et al.
2013 for a recent review on sets of anelastic equa-
tions). The perturbed equations are written with
respect to an ambient state (hereafter denoted with
the subscript a) that theoretically may differ from
the background state (hereafter denoted with bars)
around which the generic anelastic equations were
derived (both states will be detailed in Section
2.2). The background state is supposed to be isen-
tropic, and both the ambient and background states
are supposed to satisfy the hydrostatic equilibrium.
The anelastic equations written in the stellar rotat-

ing frame Ω? are

∇ · (ρ̄u) = 0 , (1)

Dtu = −∇
(
p

ρ̄

)
− S

cp
g − 2Ω? × u +

1

ρ̄
∇ ·D ,

(2)

DtS = − (u · ∇)Sa −
S

τ
+Qκ , (3)

where the perturbed quantities are denoted with-
out prime for the sake of simplicity, and Dt is the
material derivative. We recall that we use standard
notation for the basic fluid quantities, i.e. u is the
fluid velocity, ρ its density, p its pressure, and S
its specific entropy. The dissipative terms, when
present, are defined by

D =− 2ρ̄ν

(
ε− I∇ · u

3

)
, (4)

Qκ =
1

ρ̄T̄
∇ ·
(
κρ̄T̄∇S

)
, (5)

where ε =
(
∇u + (∇u)

T
)
/2 is the strain rate ten-

sor and I the identity tensor. Note that here we
choose not to consider viscous heating, as in ILES
with EULAG there is no equivalent in the implicit
treatment of sub-grid scales. This choice has the
potential drawback of not formally conserving the
total energy in the system. In addition, we use a
standard perfect gas equation of state which is lin-
earized around the background state.

In the preceding equations, convection is forced
by the conjunction of the advection of the unsta-
ble ambient entropy profile Sa, and a Newtonian
cooling term with a characteristic timescale τ (for
details, see Prusa et al. 2008; Smolarkiewicz and
Charbonneau 2013). The Newtonian cooling damps
entropy perturbations over the timescale τ which is
always chosen to exceed the convective overturn-
ing time. This ensures that on long time-scales, the
model mimics a stellar convection zone remaining in
thermal equilibrium (e.g. Cossette et al. 2016). We
have modified the equations solved in ASH to in-
clude this Newtonian cooling term in order to force
convection in exactly the same way in both codes.
As a result, the same set of anelastic equations are
solved in both cases, with the exception of explicit
dissipation operators in ASH.

The anelastic equations can equivalently be spec-
ified in terms of potential temperature Θ, which is
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related to the specific entropy through

cp ln Θ̄ =S̄ , (6)

Θ

Θ̄
=
S

cp
. (7)

Equations (2) and (3) can be written in terms of
potential temperature through

Dtu =−∇
(
p

ρ̄

)
− Θ

Θ̄
g − 2Ω? × u +

1

ρ̄
∇ ·D ,

(8)

DtΘ =− (u · ∇) Θa −
Θ

τ
+

1

ρ̄T̄
∇ ·
(
κρ̄T̄∇Θ

)
.

(9)

Note that the ambient temperature Θa is formally
defined similarly to Θ̄, i.e. cp ln Θa ≡ Sa. When de-
riving Equation (9) from (3) we have assumed that
(u · ∇)Sa ' (u · ∇) cpΘa/Θ̄, which is a reasonable
assumption given that the ambient entropy profile
differs only by a small amount from the background
entropy profile (see hereafter in Section 2.2).

2.2. Background and ambient states

Our numerical setup closely follows the anelastic
benchmark of Jones et al. (2011). We consider a
spherical shell of aspect ratio β = Ri/R?, and we
note d = R? − Ri = R?(1 − β). We assume a
gravity profile g = GM/r2, for which the anelastic
equations admit an equilibrium (denoted with bars)
polytropic solution (see, e.g., Jones et al. 2011)

ρ̄ = ρcξ
n, P̄ = Pcξ

n+1, T̄ = Tcξ , (10)

ξ = c0 +
c1d

r
, (11)

where n is the polytropic index, ρc, Pc, Tc are the
density, pressure and temperature at the bottom of
the domain, and the constants c0 and c1 are given
by

co =
2α− β − 1

1− β , c1 =
(1 + β)(1− α)

(1− β)2
, (12)

α =
β + 1

β exp (Nρ/n) + 1
, (13)

where Nρ = ln(ρi/ρo) is the number of density scale
heights in the layer. The background entropy pro-
file is given by

S̄ = cp ln

(
P̄ 1/γ

ρ̄

)
= cp ln

(
P

1/γ
c

ρc
ξ(n+1−nγ)/γ

)
,

(14)

where the standard adiabatic exponent for a perfect
gas is γ = cp/cv = 5/3. We choose a polytropic
exponent n = 3/2 to naturally ensure an isentropic
background state.

The ambient state needs to be specified only in
terms of entropy and potential temperature. The
entropy jump throughout the domain, ∆S, is used
to define the ambient entropy profile by

Sa(r) = S̄ + ∆S
ξ−n(R?)− ξ−n(r)

ξ−n(R?)− ξ−n(Ri)
, (15)

which we recall is related to the aforementioned
ambient potential temperature profile by Θa =
exp (Sa/cp).

It should be noted that the background and am-
bient states used in this work differ from the ones
used in past published ASH and EULAG simula-
tions. We implemented those profiles in EULAG to
be able to compare easily our results with ASH sim-
ulations. Furthermore, in this work only the con-
vective layer is modelled, with no underlying stable
layer.

2.3. Numerical methods

We use two codes based on different numerical
methods.

The Eulerian-Lagrangian (EULAG) code is de-
signed to use either Eulerian (flux form) or semi-
Lagrangian (advective form) integration schemes
(see Prusa et al. 2008; Smolarkiewicz and Char-
bonneau 2013). In the case presented here, Equa-
tions (6) and (8) are written as a set of Eulerian
conservation laws and projected on a geospheri-
cal coordinate system (Prusa and Smolarkiewicz
2003). EULAG solves the evolution equations using
MPDATA (multidimensional positive definite ad-
vection transport algorithm), which belongs to the
class of nonoscillatory Lax-Wendroff schemes (Smo-
larkiewicz 2006), and is more specifically a second-
order-accurate nonoscillatory forward-in-time tem-
plate. Since all dissipation is delegated to MP-
DATA, this provides an implicit turbulence model
(Domaradzki et al. 2003). Implicit dissipation di-
minishes if explicit dissipation is introduced in the
model, providing seamless transition between ILES
and LES (see Margolin et al. 2006, and references
therein). In EULAG, all linear forcing terms are
integrated in time using a second-order Crank-
Nicholson scheme.

The Anelastic Spherical Harmonics (ASH) code
is a pseudo-spectral code (see Boyd 1989; Glatz-
maier 1984; Clune et al. 1999) based on a spherical
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Parameter Value
R? [R�] 1
β = Ri/R? 0.7
M [M�] 1
Ω? [10−6 rad s−1] 6.488
G [dyne-cm2 g−2] 6.673 × 10−8

cP [erg g−1 K−1] 3.4 × 108

ρi [g cm−3] 0.2
Nρ = ln (ρi/ρo) 1.5
Polytropic exponent n 3/2
τ [s] 5.184 × 107

∆S [erg g−1 K−1] 2 × 103

Table 1: Fiducial stellar convection zone parameters. The
solar radius is R� = 6.9599 × 1010 cm, and the solar mass
M� = 1.99 × 1033 g.

harmonics decomposition, which avoids the clas-
sical issues related to the convergence of meridi-
ans at the poles of a sphere. As in EULAG, the
linear terms of the anelastic equations are treated
with an implicit Crank-Nicholson scheme of order
2. An Adams-Bashford scheme is used for the non-
linear terms. The latter are evaluated in phys-
ical space, making the numerical method overall
pseudo-spectral. In the radial direction, variables
can be described either via a Chebyshev decompo-
sition, or via a finite difference method (Alvan et al.
2014). We use the latter here with a fourth-order
finite difference scheme.

We consider in both codes stress-free, imperme-
able boundaries at the top and bottom of the do-
main such that

ur = ∂r (uθ/r) = ∂r (uϕ/r) = 0 at r = Ri, R? .
(16)

The entropy gradient is set to zero on the upper and
lower boundaries. The simulations presented in this
work are initialized with random, small-amplitude
perturbations around the background profiles de-
fined in Section 2.2.

3. Fiducial stellar convection zone with EU-
LAG

We consider a fiducial stellar convection zone
computed with the EULAG code. The parame-
ters of our fiducial case are indicated in Table 1.
We consider a convection zone with a solar-like as-
pect ratio and which rotates 2.4 times faster than
the Sun, which ensures that the Rossby number
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Figure 1: Top panel : Background density ρ̄ (left vertical
axis) and temperature T̄ (right vertical axis) profiles as a
function of spherical radius. Bottom panel : Background and
ambient potential temperature and entropy profiles. The left
vertical axis corresponds to the potential temperature, and
the right axis to the entropy.

Ro = ω/2Ω0 (where ω is the average vorticity in
the middle of the convection zone) remains suffi-
ciently smaller than one, and consequently that the
model is strongly influenced by rotation. The back-
ground density and temperature profiles are shown
in the upper panel of Figure 1. A moderate den-
sity contrast (1.5 density scale-heights) is adopted
to limit the size of the smallest turbulent scales near
the top of the domain. In the lower panel we show
the background and ambient potential temperature
(and equivalently entropy) profiles. A moderate en-
tropy constrast over the convective shell is chosen
to ensure the model is above the critical onset of
convection, but remains in an accessible turbulent
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regime.
The numerical method in EULAG implicitly sup-

plies the dissipation needed to maintain numerical
stability, which in turns varies with the grid reso-
lution. We consider two physically identical cases,
labelled E1 and E2, in which the grid resolution is
respectively Nr × Nθ × Nϕ = 51 × 64 × 128, and
101 × 128 × 256, with respective time steps of 900
and 450 seconds. By increasing the resolution (in
both time and space) by a factor of 2, the implicit
dissipation of the numerical scheme of EULAG is
expected to be reduced by a factor of 4 (see, e.g.,
Prusa et al. 2008). We display in Figure 2 the radial
velocity and entropy perturbations (left panels) in
both cases on a Mollweide projection in the mid-
dle of the convection zone. As expected, smaller
structures are observed when the resolution is in-
creased. In both cases, the so-called banana cells
clearly appear on the equator. Interestingly, the
convective luminosity almost does not change be-
tween the two cases and peaks at about 0.12L�

1

in the middle of the convection zone. The convec-
tive kinetic energy only increases by 10% from E1 to
E2, and the temperature perturbations compensate
this variation which leads to a very similar convec-
tive luminosity. The main difference between the
two cases hence lies in the kinetic energy of the dif-
ferential rotation, which results from the complex
interplay of the turbulent scales (through Reynolds
stresses) involved in the simulation. The differen-
tial rotation (right panels) exhibits a solar-like (fast
equator, slow poles) pattern in both cases. Case E2
possesses a significantly stronger pole-equator con-
strast (∼ 6%) compared to E1 (∼ 2%). The iso-Ω
contours are in both cases mostly parallel to the ro-
tation axis, and an almost co-rotating stripe is ob-
served at mid-to high latitude, indicating that the
simulation is indeed in a regime strongly influenced
by rotation (low Rossby number).

4. Estimation of the sub-grid scale modelling
effects in EULAG

We now quantitatively estimate the effect of the
numerical treatment of sub-grid scales in EULAG.
We base our analysis on the estimation of energy
transfers in the turbulent convection zone simula-
tions. We derive the spectral analysis method in
Section 4.1 and detail the results in Section 4.2.

1The solar luminosity is L� = 3.846 × 1033 erg/s

4.1. Spectral Analysis: Method
We analyze the results from the EULAG code

with the help of a spectral analysis of energy
transfers between scales in the spherical harmon-
ics space. This method was originally developed
in Strugarek et al. (2013) in the context of char-
acterizing the transfer of magnetic energy between
scales in dynamo simulations. It was more recently
adapted to the EULAG code to study the self-
consistent development of MHD instabilities in the
solar tachocline (Lawson et al. 2015). We extend it
here to study kinetic energy and entropy spectral
transfers (we refer the reader to Strugarek et al.
2013, and to Appendix A for more details about
this spectral analysis method). The scalar and vec-
torial quantities are respectively projected on the
standard and vectorial spherical harmonics bases
(Rieutord 1987)

Y ml =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ (17)

and Rm
l = Y ml er

Sml = ∂θY
m
l eθ + 1

sin θ∂ϕY
m
l eϕ

Tm
l = 1

sin θ∂ϕY
m
l eθ − ∂θY ml eϕ

, (18)

where Pml are the Legendre polynomials.
We define the kinetic energy and entropy spectra

by

EKL (r) =
1

2
ρ̄

∫∫
uL · uccL dΩ , (19)

ESL (r) =
1

2

∫∫
SL · SccL dΩ , (20)

where dΩ = sin θdθdϕ and the exponent cc de-
notes the complex conjugate. The subscript L cor-
responds to the sum over the subset of spherical
harmonics coefficients (l,m) with fixed l and m re-
stricted to a chosen ensemble M. In this work we
will consider the two ensemblesM0 = {m = 0} and
M? = {m ∈ [−l, l], m 6= 0}. We display those ax-
isymmetric and non-axisymmetric spectra at mid-
depth for cases E1 and E2 in Figure 3. The axisym-
metric kinetic energy spectrum (upper left panel)
is dominated by the differential rotation that pop-
ulates the odd L components of the spectrum. The
entropy axisymmetric spectrum (lower left panel)
is conversely dominated by even L components,
which correspond to the mean pole-equator temper-
ature contrast that establishes itself in the simula-
tions. The non-axisymmetric kinetic energy spec-
trum (upper right panel) exhibits a peak around
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Figure 2: Left panels: Mollweide projections in the middle of the convection zone of the radial velocity (upper panels) and
entropy perturbations (lower panels) for cases E1 (left) and E2 (right). The positive vr and S perturbations are denoted in
red, and the negative values in blue. Right panels: Differential rotation (Ω) profile (averaged over time and longitude) on the
meridional plane for cases E1 (left) and E2 (right). The differential rotation profile is normalized to the stellar rotation rate
Ω?. Rotation faster than Ω? is shown in red, slower in blue, and co-rotation appears in white.

L ∼ 25 in case E1 (L ∼ 35 in case E2) which
corresponds to the dominant convective structure
that can be observed in the Mollweide projection
in Figure 2. As expected, the non-axisymmetric ki-
netic energy spectrum at scales L > 20 is shifted
to smaller scales (higher L’s) when the resolution
is increased, but the overall shape of the non-
axisymmetric kinetic energy spectrum remains the
same. The non-axisymmetric entropy spectrum
peaks at L ∼ 25 in case E1 and L ∼ 30 in case
E2. When the resolution is doubled, the entropy
spectrum is not shifted to smaller scales but the
negative slope extends down to the smallest scales
resolved in the domain.

Using the anelastic Equations (2) and (3) with
no explicit dissipation, we obtain the following evo-
lution equations

ĖKL (r) =PL + GL + CL +
∑
L1,L2

RL (L1, L2) , (21)

ĖSL (r) =SaL +NL +
∑
L1,L2

AL (L1, L2) . (22)

In the kinetic energy Equation (21), the various
terms in the right hand side correspond to contribu-
tions from the pressure gradient, buoyancy, Coriolis
force and non-linear advection of momentum. Note
that the Coriolis contribution CL vanishes when
summed over all scales L as it should, but is able
to spectrally redistribute energy among neighbour
shells (see also Augier and Lindborg 2013 and Ap-
pendix A.2.2). In the entropy Equation (22), they
correspond to the ambient state advection, Newto-
nian cooling, and non-linear advection of the en-

tropy perturbations. The detailed expressions of
the different terms can be found in Appendix A.2
and Appendix A.3. We show in Figure 4 the var-
ious terms of Equations (21) and (22) for cases E1
and E2 at mid-depth (we focus here solely on the
non-axisymmetric spectra). The different contribu-
tions are averaged over more than 40 stellar rota-
tions after the simulations have reached a steady-
state (i.e. after the total kinetic energy is stabi-
lized). In the kinetic energy balance (upper pan-
els), buoyancy (red squares) is clearly the source of
energy for almost all turbulent scales and is gener-
ally opposed by the pressure gradient (green trian-
gles). The non-linear advection contribution (ma-
genta diamonds) changes sign at the peak of the
spectrum because of a direct energy cascade: scales
larger than the maximum energy scale lose energy
to the smaller scales. The Coriolis force (blue cir-
cles) efficiently acts on the largest scales due to the
small latitudinal extent of the higher L modes, as
expected.

The entropy balance is shown in the lower panels.
The entropy perturbations draw energy from the
ambient entropy profile at all scales (blue circles)
and are stabilized by the non-linear advection (red
squares). The Newtonian cooling term (green tri-
angles) contributes very marginally to the entropy
balance since we chose a long cooling timescale τ
(see Table 1). We finally note that no cascading
process is observed in the entropy transfers in these
numerical experiments: the non-linear advection is
negative for all the resolved scales.

The total right hand side of the kinetic energy

7



100 101 102

L

101

102

103

104

105

106

107

108

EK L
[e

rg
cm

−
3
]

Axisymmetric spectrum (KE)
E1
E2

100 101 102

L

103

104

105

EK L
[e

rg
cm

−
3
]

Non-axisymmetric spectrum (KE)
E1
E2

100 101 102

L

10−1

100

101

102

103

ES L
[e

rg
2

g−
2

K
−

2
]

Axisymmetric spectrum (S)
E1
E2

100 101 102

L

101

102

ES L
[e

rg
2

g−
2

K
−

2
]

Non-axisymmetric spectrum (S)
E1
E2

Figure 3: Axisymmetric (left panels) and non-axisymmetric (right panels) kinetic energy (upper panels) and entropy (lower
panels) spectra averaged over 40 rotation periods. Case E1 spectra are shown in red and case E2 in blue. The spectra are
summed over the spherical harmonics degree m and displayed as a function of L (see text).

and entropy evolution equations —shown as gray
stars in Figure 4— should cancel out in steady-
state. In Figure 4, we recall that the various con-
tributions were averaged over a time period of 40
stellar rotations during which the total energy in
the system has stabilized. Hence, the system is
in steady-state and the imbalance (gray stars) can
only be attributed to the effect of the numerical
scheme that we do not represent in these plots and
that tends to dissipate energy in EULAG. We now
propose a possible interpretation of this imbalance
to obtain quantitative estimates of the effect of the
sub-grid scales modelling in EULAG.

4.2. Effective dissipation coefficients

In EULAG, the implicit treatment of sub-grid
scales results in an additional contribution to the
kinetic energy and entropy evolution equations that
is a priori unknown. In the context of 3D homo-
geneous turbulence in a cartesian box, Domaradzki
et al. (2003) showed that the implicit sub-grid scales
treatment of MPDATA (the numerical algorithm
behind EULAG) mimics qualitatively an eddy vis-
cosity. We build here on this idea and attempt to
match the unknown additional terms of Equations
(21) and (22) to an eddy viscosity and an eddy ther-
mal dissipation. Such dissipation terms can be writ-
ten as
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VL =

∫∫
(−∇ ·D)L · uL dΩ , (23)

KL =

∫∫
(Qκ)L · SL dΩ , (24)

where D and Qκ respectively depend on an eddy
viscosity ν and an eddy thermal dissipation coef-
ficient κ (Equations 4 and 5). Using the results
from EULAG simulation, we calculate Equations
(23) and (24) neglecting at this point the depen-
dency upon radius and scale L of the unknown dis-
sipation coefficients ν and κ (set to arbitrary values
νa = 1, κa = 1). Our procedure to obtain effective
dissipation coefficient is as follows. We average in
time the right hand side of Equation (21) (the left
hand side is vanishingly small because the system
has reached a statistical steady-state), and divide it
with the analogously averaged Equation (23). The
resulting ratio gives us naturally νeff . The exact

same procedure is applied to Equations (22) and
(24) to obtain κeff . We display the resulting eddy-
diffusion coefficients νeff(r, L) and κeff(r, L) in the
left panels of Figure 5 for case E1.

Our numerical procedure embeds numerous nu-
merical approximations that need to be acknowl-
edged. First, we have no formal proof that the
numerical sub-grid scales effects can be matched
to an eddy-type dissipation in the case of turbu-
lent convection simulations with EULAG. Second,
EULAG is formulated on a regular cartesian grid
which is mapped to the spherical geometry. Here,
we carry our analysis on a spherical harmonics de-
composition that is obtained through an interpo-
lation of EULAG’s results on Gauss-Legendre col-
location points in latitude. Hence, some numerical
errors can appear in our analysis since this does not
reflect directly how Equations (1)-(3) are solved in
EULAG. Third, the spherical harmonics decompo-
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sition is cut at the maximum accessible spherical
harmonics degree Lmax, corresponding to the small-
est grid size in latitude in EULAG. We repeated
our analysis by de-aliasing the spherical harmonics
decomposition up to 2Lmax/3, which did not sig-
nificantly change our results, giving us confidence
that the second and third error sources are not sig-
nificantly affecting our study. Finally, because we
cannot expect the sub-grid scale model to behave
entirely as an eddy-type dissipation operator, we
consider a criterion to assess the robustness of the
effective eddy-dissipation coefficients we obtained.
For each value of νeff(r, L) (and κeff(r, L)), we cal-
culate the standard deviation along the time win-
dow over which we averaged the various contribu-
tions shown in Figure 4. If the standard deviation
is of the order of the deduced eddy-dissipation co-
efficient, we do not confidently rely on its value. In
the left panels of Figure 5 we darken the pixels of
the (r, L) colormaps accordingly, and only consider
the bright pixels in the following analysis.

The robust eddy-diffusion coefficients show char-
acteristic patterns in r and L, which are shown
in the right panels of Figure 5. The eddy vis-
cosity is maximized near the radial boundaries
(which are impenetrable), and increases with L.
Its average value lies between 5 × 1011 cm2/s and
1.5× 1012 cm2/s which agrees with empirically de-
duced implicit eddy-diffusion coefficients obtained
with mean-field models representing EULAG simu-
lations (see, e.g., Simard et al. 2016). The average
profile in r and L are shown in blue, and the stan-
dard deviation along L and r is denoted by the gray
areas.

The eddy heat dissipation coefficient shows a re-
versed profile. It is maximized at the center of the
convection zone and decreases strongly (by almost
a factor of 8) close to the radial boundaries. In the
robust part of the L profile (L ≥ 20) it decreases
with L.

The lower panels show the effective Prandtl num-
ber Preff = νeff/κeff . It is generally assumed in
ILES that the Prandtl number is close to 1. Here we
find that it is indeed very close to unity in the mid-
dle of the convection zone (Preff = 1 corresponds to
white in the colormap), but rapidly increases by al-
most an order of magnitude near the radial bound-
aries. The Prandtl number also slightly increases
with L, due to the simultaneous increase of νeff and
decrease of κeff .

We performed the same analysis for case E2,
which is not shown here. The radial profile of

the dissipation coefficients is very similar to the
one shown in Figure 5, and the L profile is simply
shifted to higher L’s thanks to the finer resolution.
The average value of νeff and κeff is decreased by
factor between 3 and 5, which is compatible with
the naive expectation of doubling the overall reso-
lution (in both time and space) of the simulation,
leading to an implicit dissipation reduced by a fac-
tor of 4.

4.3. Comparison with the ASH code

In order to further validate the deduced dissi-
pation coefficients, we now use them in LES done
with the ASH code. The ASH code allows to spec-
ify dissipation coefficient depending on both r and
L, which enables to fully take into account the dis-
sipation coefficients inverted in Section 4.2.

We fit the dissipation coefficients with the follow-
ing formulation

νfit(r, L) =νm (bνL+ cν)

N∑
k=0

aνk

(
r

R?

)k
(25)

κfit(r, L) =κm (bκL+ cκ)

N∑
k=0

aκk

(
r

R?

)k
. (26)

The radial shape of the effective dissipation co-
efficients is fitted with a standard polynomial. The
dependency against L is fitted only in the L ∈
[20, Lmax] range because the matched νeff and κeff

are not statistically significant at low L (see the dis-
cussion in previous section). We linearly fit both of
them for the sake of simplicity.

At large scales, dissipation is small in EULAG
and our method is not able to match EULAG’s
dissipation to standard enhanced dissipation coef-
ficients. In ASH, we hence arbitrarily set them to
the small values νl = 2 × 1011 cm2/s and κl =
5 × 1010 cm2/s using a smooth hyperbolic tangent
(red curves in Figure 5). Furthermore, an ASH sim-
ulation using these fitted coefficients is not stable
when using the same grid resolution as in EULAG.
Hence, we double the resolution of case E1 in ASH
and arbitrarily increase the value of the fitted coef-
ficients to νs = 1013 cm2/s and κs = 2×1013 cm2/s
at small scales (large L), using again a smooth hy-
perbolic tangent. The fitted profiles used in ASH
are shown in red in the middle and right panels of
Figure 5, and can be written as (here, for the vis-
cosity)

ν(r, L) = [νfit + (1− sl)νl] (1− ss) + ssνs , (27)
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where the subscripts s and l respectively refer to
the small and large scale branches of the profile,
and the generic step function s(L,Li) is defined by

s(L,Li) =
1

2

[
1 + tanh

(
L− Li
0.1Li

)]
, (28)

where Li is centering parameter of the hyperbolic
tangent.

The ASH results are sensitive to the arbitrary
choices of effective dissipation coefficients at large
and small scales. In order to illustrate their sensi-
tivity, we show three different cases obtained with
ASH when the transition at large scales is slightly
shifted (see the solid, dashed and dotted red lines in
Figure 5). We label the cases ’ALl’ where Ll is the
centering scale of the hyperbolic tangent at large
scales. At small scales, the centering scale is set
to Ls = 64 for all cases. Figure 6 shows the result-
ing differential rotation, its radial profiles at various
latitudes, and the radial velocity at mid depth, cor-
respondingly for the three cases together with the
case E1.

The three cases exhibit a differential rotation pat-
tern which qualitatively agrees with case E1. Over-
all, case A20 matches E1 best, albeit its differen-
tial rotation is stronger, and steeper at the equator
(blue line). However, A20 better matches E1 at mid
latitudes (yellow to red lines) where A14 and A17
evince too strong differential rotation.

The convective patterns (lower panels) change
significantly between the three cases. In case A14,
convection is very weak on an equatorial band and
is concentrated at higher latitudes. In case A17
only an “active nest of convection” (see Brown et al.
2008) is observed on the equator, and in case A20
the convective patterns qualitatively match E1 with
slightly stronger convective amplitudes. We recall
that the only difference between cases A14 and A20
is the location of the transition to low dissipation
coefficients at large scales, i.e. in case A20 a larger
range of large scales is evolved with low dissipation
coefficients. We recall that the kinetic energy spec-
trum peaks in between L = 20 and L = 30 in the
ASH cases. The non-linear balance saturating the
peak of the turbulent convective spectrum is thus
altered from left to right in Figure 6, with higher
viscous and heat dissipation in case A14 than in
case A20 at the peak of the turbulent spectrum.
In case A14, the radial shear of the differential ro-
tation near the equatorial plane is strong enough
to weaken significantly convection, whereas in case
A20 the banana cells still live on.

In spite of these differences, the three ASH cases
exhibit a similar convective heat transport (not
shown) peaked at the center of the convection zone
with an equivalent convective luminosity Lcz ∼
0.14L� in cases A17 and A20, and Lcz ∼ 0.13L�
in case A14. All three are close to the E1 case, for
which the convective transport reaches 0.12L� (see
Section 3).
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Figure 7: Total kinetic energy (top panel) and entropy (bot-
tom panel) spectra for cases A14 (dashed cyan), A17 (dotted
magenta), A20 (plain blue) and E1 (plain red).

Interestingly, the large-scale non-axisymmetric
entropy spectrum (Figure 7) is significantly larger
in ASH cases compared to EULAG, while the ki-
netic energy spectrum at those scales remain the
same. The slope of the kinetic energy spectrum at
mid-scale in EULAG is well recovered by case A20,
with a departure near the transition to high dissipa-
tion around L = 64. The change in the spectra from
case A14 to case A20 denotes a non-trivial influence
of scale-dependent dissipation coefficients on the
correlations between the large-scale heat and mo-
mentum fluctuation. This may have important the-
oretical implications for the amplitude of the large-
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scale convective fluctuations in the Sun (Hanasoge
et al. 2012; Greer et al. 2015; Lord et al. 2014), and
will be studied in near future.

Finally, we recall that the viscous heating has
been omitted in the governing equations, as in ILES
it is generally not accounted for by numerics sup-
plying small-scale diffusion, and hence should not
be formally introduced in this ILES-LES compar-
ison. Nevertheless, omitting the viscous heating
could formally lead to net energy loss in simula-
tions, we hence intend to explore this effect in a
subsequent study.

Numerous numerical approximations have been
made in (i) projecting the results from EULAG
in spectral space, (ii) matching the imbalance in
Equations (21) and (22) to standard laplacian dis-
sipation terms, and (iii) using the matched dissipa-
tions coefficients in a LES with the ASH code, in-
troducing arbitrary dissipation coefficients at very
large and very small scales. In spite of these approx-
imations, we managed to simulate with ASH (case
A20), using fitted explicit dissipation coefficients, a
convective state producing a large scale differential
rotation that compares adequately with the results
obtained with EULAG. This comparison gives us
confidence in the methodology we developed to es-
timate the dissipation properties of ILES with EU-
LAG, and a posteriori suggests that, at least in the
bulk part of the turbulent spectrum, EULAG’s im-
plicit dissipation could be interpreted in terms of
standard explicit dissipation.

5. Conclusions

In this work we have studied the dissipation prop-
erties of implicit large-eddy simulations of an ide-
alized turbulent stellar convection zone under the
influence of rotation with the EULAG code. By
considering twin simulations where the grid resolu-
tion was doubled, we showed that the kinetic energy
spectrum of turbulent convection peaks at smaller
scales in the most refined model, as expected. The
latter model develops a stronger differential rota-
tion, which results from the complex interplay be-
tween the turbulent scales, which are themselves
affected by the implicit dissipation of EULAG.

In order to characterize this implicit dissipa-
tion, we developed a spectral method to a poste-
riori quantify the effect of the sub-grid scale mod-
elling of EULAG. By evaluating balance equations
for kinetic energy and entropy when the system

has reached a steady-state, we were able to iso-
late the implicit dissipation contribution. The sub-
grid scale modelling was shown to match quantita-
tively well a standard laplacian-like operator from
medium to small scales. At large scales, the implicit
dissipation introduced by EULAG is very weak and
could not be matched to such classical formulation.

For a grid resolution comparable to previously
published results with EULAG in the context of
solar dynamo (Ghizaru et al. 2010; Racine et al.
2011; Beaudoin et al. 2013; Passos and Charbon-
neau 2014; Lawson et al. 2015), we find the effec-
tive viscosity and thermal diffusivities are of the
order of 1012 cm2/s. However, we recall that the
effective dissipation does not match to an equiv-
alent enhanced dissipation coefficient for the large
scales feature such as differential rotation, for which
we showed the effective dissipation to be a least an
order of magnitude lower.

In order to further test our estimates of the dis-
sipation coefficients, we used them in a series of
LES with the ASH code. Note however that we
were compelled to select arbitrary dissipation coef-
ficients at very small scales (below the EULAG grid
scale) and very large scales (where the implicit dis-
sipation in EULAG is small and does not match a
standard laplacian operator). We showed that our
arbitrary choice of dissipation coefficients at large
scale could significantly affect the large-scale flows
in ASH. However, by choosing adequately these dis-
sipation coefficients, we were able to reproduce the
large scale differential rotation of EULAG simula-
tion. Our results thus indicate that results from
ILES and LES could be reconciled.

The spectral analysis developed in this paper is
generic and can be easily extended to the MHD
regime (Strugarek et al. 2013). A natural extension
of this work is to perform such joint simulations of
cyclic dynamos, in order to isolate to what extent
the particular treatment of sub-grid scales chosen
in EULAG simulations impacts the existence and
characteristics of such solutions, as well as their de-
pendency to rotation. We intend to explore this
aspect in a future publication.
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Appendix A. Spectral transfers equations

Appendix A.1. Vectorial spherical harmonics basis

Appendix A.1.1. The standard vectorial basis

We define from Rieutord (1987); Mathis and
Zahn (2005):

Rm
l = Y ml er

Sml = ∂θY
m
l eθ + 1

sin θ∂ϕY
m
l eϕ

Tm
l = 1

sin θ∂ϕY
m
l eθ − ∂θY ml eϕ

, (A.1)

where (er, eθ, eϕ) defines the spherical basis and
Y ml are the spherical harmonics defined by

Y ml =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ (A.2)

where Pml are the associated Legendre polynomials.
The basis (A.1) have the following properties :∫∫

Rm1

l1
·
(
Rm2

l2

)cc
dΩ =δl1,l2δm1,m2

, (A.3)∫∫
Sm1

l1
·
(
Sm2

l2

)cc
dΩ =

∫∫
Tm1

l1
·
(
Tm2

l2

)cc
dΩ

=l1(l1 + 1)δl1,l2δm1,m2
,

(A.4)
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where dΩ = sin θdθdϕ the solid angle, cc means
complex conjugate and δ is the Kronecker symbol.
We also have:

(Sml )cc = (−1)mS−ml , (A.5)

and all the other scalar cross products are 0.

Appendix A.1.2. Scalar fields identities

Defining ψ =
∑
l,m

{
ψlm(r)Y ml

}
, we get:

∇ψ =
∑
l,m

{
∂rψ

l
mRm

l +
ψlm
r

Sml

}
, (A.6)

∇ · ∇ψ =
∑
l,m

∆lψ
l
mY

m
l (A.7)

where ∆l = ∂2
rr + 2

r∂r −
l(l+1)
r2 .

Appendix A.1.3. Vectorial fields identities

For a vector

X =
∑
l,m

{
AlmRm

l + BlmSml + ClmTm
l

}
,

we obtain:

∇ ·X =
∑
l,m

[
1

r2
∂r(r

2Alm)− l(l + 1)
Blm
r

]
Y ml ,

(A.8)

∇×X =
∑
l,m

[
l(l + 1)

Clm
r

]
Rm
l

+

[
1

r
∂r(r Clm)

]
Sml

+

[
Alm
r
− 1

r
∂r(rBlm)

]
Tm
l , (A.9)

∇2X = +

[
∆lAlm −

2

r2
(Alm − l(l + 1)Blm)

]
Rm
l

+
∑
l,m

[
∆lBlm + 2

Alm
r2

]
Sml

+
[
∆l Clm

]
Tm
l . (A.10)

Appendix A.1.4. An alternative vectorial basis

The vectorial spherical harmonics basis defined
in appendix Appendix A.1 is very efficient to cal-
culate scalar products or linear differential operator
on vectors. Nevertheless, it is quite hard to use it

to express vectorial products. Instead we define the
following basis (e.g., see Varshalovich et al. 1988):

Y m
l,l+ν =

1∑
µ=−1

(−1)l−mcl,m,ν,µY
m−µ
l+ν eµ , (A.11)

where

cl,m,ν,µ =
√

2l + 1

(
l l + ν 1
m µ−m −µ

)
, (A.12)

(. . . ) is the 3-j Wigner coefficient linked to Clebsch-
Gordan coefficients, and the vectors eµ are

e−1 = 1√
2

(ex − iey)

e0 = ez
e1 = − 1√

2
(ex + iey)

, (A.13)

where (ex, ey, ez) defines the cartesian basis. Note
that the equivalent of the conjugation rule (A.5) is
then (

Ym
l,l+ν

)cc
= (−1)

m+δ0ν Y−ml,l+ν . (A.14)

Appendix A.1.5. Vectorial product

As previously, we decompose a vector X on this
basis:

X =

∞∑
l=0

l∑
m=−l

1∑
ν=−1

X m
l,l+νY

m
l,l+ν .

Evaluating the vectorial product of two vectors
X0 = X1 ×X2, one gets:

X m0

0;l0,l0+ν0
=

∞∑
l1,l2=0

l0≥|l1−l2|
l0≤l1+l2

l1,l2∑
m1=−l1
m2=−l2

m1+m2=m0

∑
ν1,ν2

X m1

1;l1,l1+ν1
X m2

2;l2,l2+ν2
J l0,m0,ν0
l1,m1,ν1,l0,m0,ν0

,

(A.15)

where

J l,m1+m2,ν
l1,m1,ν1,l2,m2,ν2

= i(−1)ν1−ν2+(m1+m2)

√
3

2π√
(2l1 + 1)(2l1 + 2ν1 + 1)(2l2 + 1)(2l2 + 2ν2 + 1)

√
(2l + 1)(2l + 2ν + 1)

 l1 l2 l
l1 + ν1 l2 + ν2 l + ν

1 1 1

(
l1 l2 l
m1 m2 −(m1 +m2)

)
(
l1 + ν1 l2 + ν2 l + ν

0 0 0

)
, (A.16)

with {· · · } being the 9-j Wigner coefficient.
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Appendix A.1.6. Scalar product

We decompose a vector X on this basis in the
following way:

X =

∞∑
l=0

l∑
m=−l

1∑
ν=−1

X m
l,l+ν(r)Y m

l,l+ν .

Evaluating the scalar product of two vectors M =
X1 ·X2, one gets:

Ml
m =

∑
l1,m1,ν1
l2,m2,ν2

m1+m2=m

X m1

1;l1,l1+ν1
X m2

2;l2,l2+ν2
Hl,m1+m2

l1,m1,ν1,l2,m2,ν2

(A.17)

where the sum symbol is the same as in Equation
(A.15) and

Hl,m1+m2

l1,m1,ν1,l2,m2,ν2
= (−1)l1−(l2+ν2)+l+m

√
1

4π√
(2l1 + 1)(2l1 + 2ν1 + 1)√
(2l2 + 1)(2l2 + 2ν2 + 1)(2l + 1){
l1 + ν1 l2 + ν2 l
l2 l1 1

}
(

l1 l2 l
m1 m2 −(m1 +m2)

)
(
l1 + ν1 l2 + ν2 l

0 0 0

)
(A.18)

with {· · · } being here the 6-j Wigner coefficient.

Appendix A.1.7. Basis change relations

For a vector X decomposed in the following man-
ner:

X =
∑
l,m

{
AlmRm

l + BlmSml + ClmTm
l

}
=

∞∑
l=0

l∑
m=−l

1∑
ν=−1

{
X m
l,l+νY

m
l,l+ν

}
,

we have the two following relations to change from
one basis to the other:
Alm = 1√

2l+1

[√
lX m

l,l−1 −
√
l + 1X m

l,l+1

]
Blm = 1√

2l+1

[
1√
l
X m
l,l−1 + 1√

l+1
X m
l,l+1

]
Clm = i√

l(l+1)
X m
l,l

,


X m
l,l−1 =

√
l

2l+1

(
Alm + (l + 1)Blm

)
X m
l,l = −i

√
l(l + 1)Clm

X m
l,l+1 =

√
l+1
2l+1

(
−Alm + lBlm

) .

(A.19)

Appendix A.2. Kinetic Energy

We start from the momentum equation:

∂tu = − (u · ∇) u− 2Ω? × u

−∇
(
P

ρ̄

)
− S

cp
g −∇ ·D (A.20)

We define the kinetic energy density spectrum
by EKL = ρ̄

2

∫∫
uL · uccL dΩ. We multiply Equation

(A.20) by uL and integrate it over the spherical
shell to obtain:

ĖKL (r) =PL + GL + CL
+
∑
L1,L2

RL (L1, L2) + VL , (A.21)

where the various terms are given by

PL =− ρ̄
∫∫
∇
(
P

ρ̄

)
L

· uccL dΩ , (A.22)

GL =− ρ̄
∫∫

SL
cP

g · uccL dΩ , (A.23)

CL =− ρ̄
∫∫

2 (Ω? × u)L · uccL dΩ , (A.24)

RL =− ρ̄
∫∫

[(u · ∇) u]L · uccL dΩ , (A.25)

VL =

∫∫
(∇ ·D)L · uccL dΩ . (A.26)

The pressure gradient contribution is easily cal-
culated with Equation (A.6) and the buoyancy con-
tribution is also straightforward to evaluate. We
now detail the three remaining contributions.

Appendix A.2.1. Advection

We know that

− (u · ∇) u = −1

2
∇ (u · u) + u× (∇× u) (A.27)
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As a result, one can simply use the standard for-
mulae to evaluate the scalar product (Appendix
A.1.6) and the vectorial product (Appendix A.1.5)
part of the preceding equation to compute the full
advection term A.25.

Appendix A.2.2. Coriolis force

We recall the reader that the Coriolis force con-
tribution vanishes for the total energy. It is able
though to redistribute energy spectrally among
scales, as we show now. By definition we have

Ω? = Ω? (cos θer − sin θeθ)

=

√
4πΩ?√

3

(
R0

1 + S0
1

)
=
√

4πΩ?Y
0
1,0.

Writing X = Ω? × u, we note that:

− (Ω? × u)
m
l,l+ν =

√
4π

1∑
ν1=−1

[
uml,l+ν1J

l,m,ν
l,m,ν1,1,0,−1

+uml+1,l+1+ν1J
l,m,ν
l+1,m,ν1,1,0,−1

+ uml−1,l−1+ν1J
l,m,ν
l−1,m,ν1,1,0,−1

]
Ω? .

The scalar product with uccL is then trivial to com-
pute. This Coriolis contribution is equivalent to
Equations (24-25) in Augier and Lindborg (2013),
where a spectral kinetic energy equation is derived
in the context of General Circulation Models.

Appendix A.2.3. Viscous tensor

From the definition

D = −2ρ̄ν

(
ε− I∇ · u

3

)
,

and the decomposition

u =
∑
l,m

AlmRm
l + BlmSml + ClmTm

l ,

one may rewrite the components of the symmetric
tensor in the following fashion:

Drr =− 2ρ̄ν
∑
l,m

{
∂rAlmY ml

}
+

2ρ̄ν

3
∇ · u

Drθ =− ρ̄ν
∑
l,m

{(
∂rBlm −

Blm
r

+
Alm
r

)
∂θY

m
l

+

(
∂rClm −

Clm
r

)
∂ϕY

m
l

sin θ

}
Drϕ =− ρ̄ν

∑
l,m

{(Clm
r
− ∂rClm

)
∂θY

m
l

+

(
∂rBlm −

Blm
r

+
Alm
r

)
∂ϕY

m
l

sin θ

}
Dθθ =− 2ρ̄ν

∑
l,m

{Blm
r
∂2
θθY

m
l +

Alm
r
Y ml

+
Clm
r sin θ

∂2
θϕY

m
l −

Clm
r tan θ

∂ϕY
m
l

sin θ

}
+

2ρ̄ν

3
∇ · u

Dθϕ =− ρ̄ν
∑
l,m

{ Clm
r tan θ

∂θY
m
l −

Clm
r
∂2
θθY

m
l

+
Clm

r sin2 θ
∂2
ϕϕY

m
l +

2Blm
r sin θ

∂2
θϕY

m
l

− 2Blm
r tan θ

∂ϕY
m
l

sin θ

}
Dϕϕ =− 2ρ̄ν

∑
l,m

{ Blm
sin2 θ

∂2
ϕϕY

m
l +

Blm
r tan θ

∂θY
m
l

− Clm
r sin θ

∂2
θϕY

m
l +

Clm
r tan θ

∂ϕY
m
l

sin θ

}
+

2ρ̄ν

3
∇ · u .

Using the formula for the divergence of a tensor in
spherical coordinates, it can be shown, after a long
but straightforward calculation, that:

−∇ ·D =
∑
l,m

αlmRm
l + βlmSml + γlmTm

l ,
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where

αlm =ρ̄ν

[
∆lAlm +

1

3
∂2
rrAlm +

2

3r
∂rAlm −

8

3r2
Alm

+
l(l + 1)

3r

(
−∂rBlm +

7

r
Blm
)]

+
2

3
∂r (ρ̄ν)

(
2∂rAlm − 2

Alm
r

+
l(l + 1)

r
Blm
)

βlm =ρ̄ν

[
∆lBlm −

l(l + 1)

3r2
Blm +

1

3r

(
∂rAlm +

8

r
Alm
)]

+ ∂r (ρ̄ν)

(
r∂r
Blm
r

+
Alm
r

)
γlm =

{
ρ̄ν∆lClm + ∂r (ρ̄ν) r∂r

Clm
r

}
,

with ∆l = ∂2
rr + 2

r∂r −
l(l+1)
r2 .

Appendix A.3. Entropy equation

We start from the entropy equation:

∂tS = − (v · ∇) (S + Sa)− S

τ
+Qκ , (A.28)

where we neglected viscous heating for the sake
of simplicity. The entropy spectrum is defined by
ES = 1

2

∫∫
S2
L dΩ. We multiply Equation (A.28)

by SL and integrate it over the spherical shell to
obtain:

ĖSL (r) = SaL +NL +
∑
L1,L2

AL (L1, L2) +KL ,

(A.29)

where the various terms are given by

SaL =−
∫∫

[(v · ∇)Sa]L · SccL dΩ , (A.30)

NL =−
∫∫ (

S

τ

)
L

· SccL r2dΩ , (A.31)

AL =−
∫∫

[(v · ∇)S]L · SccL dΩ , (A.32)

KL =

∫∫
(Qκ)L · SccL r2dΩ . (A.33)

The non-linear contribution AL is then calcu-
lated using the scalar product (A.17), and the three
other contributions are easily calculated using the
spherical harmonics selection rules.
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