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Abstract 

Direct numerical simulations of flow through two millimeter-scale rock samples of limestone 2 

and sandstone are performed using three diverse fluid dynamics simulators. The resulting steady-state 3 

velocity fields are compared in terms of the associated empirical probability density functions (PDFs) 4 

and key statistics of the velocity fields. The pore-space geometry of each sample is imaged at 5.06 5 

m voxel-size resolution using X-ray micro-tomography. The samples offer contrasting 6 

characteristics in terms of total connected porosity (about 0.31 for the limestone and 0.07 for the 7 

sandstone) and are typical of several applications in hydrogeology and petroleum engineering. The 8 

three-dimensional fluid velocity fields within the explicit pore spaces are simulated using ANSYS® 9 

FLUENT® [ANSYS, Inc.: ANSYS® FLUENT® User’s guide, Rel. 12.1, (2009)], EULAG [Prusa, 10 

J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: Comput. Fluids 37, 1193 (2008)], and SSTOKES 11 

[Sarkar, S., Toksöz, M.N., Burns, D.R.: Annual Consortium Meeting MIT Earth Resources 12 

Laboratory (2002)]. These computational approaches are highly disperse in terms of algorithmic 13 

complexity, differ in terms of their governing equations, the adopted numerical methodologies, the 14 

enforcement of internal no-slip boundary conditions at the fluid-solid interface, and the computational 15 

mesh structure. As metrics of comparison to probe in a statistical sense the internal 16 

similarities/differences across sample populations of velocities obtained through the computational 17 

systems, we consider (i) integral quantities, such as the Darcy flux, and (ii) main statistical moments 18 

of local velocity distributions including local correlations between velocity fields. Comparison of 19 

simulation results indicates that mutually consistent estimates of the state of flow are obtained in the 20 

analyzed samples of natural pore spaces, despite the considerable differences associated with the three 21 

computational approaches. We note that in the higher porosity limestone sample, the structures of the 22 

velocity fields obtained using ANSYS FLUENT and EULAG are more alike than either compared 23 

against the results obtained using SSTOKES. In the low porosity sample, the structures of the velocity 24 

fields obtained by EULAG and SSTOKES are more similar than either is to the fields obtained using 25 

ANSYS FLUENT. With respect to macroscopic quantities, ANSYS FLUENT and SSTOKES 26 
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provide similar results in terms of the average vertical velocity for both of the complex micro-scale 27 

geometries considered, while EULAG tends to render the largest velocity values. The influence of 28 

the pore space structure on fluid velocity field characteristics is also discussed.  29 

Keywords Pore-scale flow simulation, Porous media, Eulerian grid-based methods, Computational 30 

models comparison, Immersed boundary method. 31 

 32 

1 Introduction 33 

Recent developments in pore-scale modeling and imaging techniques are playing a key role in 34 

our understanding of the feedback between small-scale physics and macro-scale modeling of flow 35 

and transport processes in natural and/or reconstructed porous media [18, 28]. In particular, high-36 

resolution mapping and visualization of the structure of geologic materials allow detailed pore-scale 37 

modeling of flow in topologically complex pore spaces. Direct numerical simulation of flow through 38 

intricate microscopic structures yields insights into the effects of pore space characteristics on both 39 

microscopic and macroscopic flow properties. Modeling these phenomena has applications that range 40 

from groundwater flow and transport [29], to geophysics, including, e.g., petroleum extraction [28] 41 

and carbon sequestration [4], to filter design [15]. The spatially variable resistance to flow offered by 42 

the solid phase of a porous medium induces non-uniform fluid velocity fields where the observed 43 

dynamics range from stagnation to chaotic separation of fluid particle trajectories [19]. The effects of 44 

these flows taking place at the micro-scale can be embedded into continuum scale models, which can 45 

then be used to support field-scaled decision-making in oil, gas, and groundwater reservoir 46 

management.  47 

As opposed to a pore-network modeling approach [4, 5, 34, 47] or a particle-based Lagrangian 48 

methodology, e.g., lattice-Boltzmann [6, 8, 9, 16, 23, 26, 30] and smoothed particle hydrodynamics 49 

[44, 45], in the Eulerian methodology for simulating flow in microscopic pore structures a particular 50 

numerical scheme, such as finite difference [26], finite element [10] or finite volume [11, 49], is 51 

selected and the governing equations of flow are discretized accordingly. This discrete approximation 52 
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is then numerically integrated on a computational mesh representing the pore space in a direct 53 

numerical simulation of flow. Comparisons of direct simulations of single-phase flow with particle-54 

based methods [11,26] revealed minimal and essentially negligible differences between the results 55 

obtained with the methodologies tested, but a clear advantage of the Eulerian methods was observed 56 

with regard to the required computation time. Lagrangian methods are slow to converge to a steady-57 

state solution (for cases when the system evolves to attain steady-state) even when the codes are 58 

highly parallelized [9, 16]. 59 

Here, we compare three methodologies for the direct numerical simulation of gravity-driven, 60 

fully-saturated, single-phase flow at the pore microstructure scale in two millimeter-scale natural rock 61 

samples. All three models are comparable in terms of resolution, but they are fundamentally 62 

dissimilar in terms of numerical methodologies and algorithmic complexity. We consider (a) the 63 

ANSYS® FLUENT® software [2], which integrates the Navier-Stokes equations using a finite volume 64 

method on a hexagonal mesh; (b) the EULAG system [33], which uses conservative finite differences 65 

coupled with the volume-penalizing immersed boundary (IB) methodology to resolve the Navier-66 

Stokes equations on a uniform Cartesian grid; and (c) the SSTOKES software, which uses standard 67 

second order finite differencing and the ghost-cell IB method proposed by [35] to resolve the Stokes 68 

equations on meshes composed of cubic voxels. The natural porous media samples we consider 69 

consist of a quasi-pure silica sandstone and an oolithic limestone, which are characterized by 70 

distinctly different pore-scale structures. These types of geo-materials are found in several 71 

hydrogeology and petroleum engineering applications, and are viewed as typical media for the oil 72 

and gas industry. A detailed reconstruction of the pore-space geometry of these systems was 73 

performed using X-ray micro-tomography [14], which provides information about the internal 74 

structure of natural samples in a non-destructive way [48].  75 

Quantification of similarities/differences is performed according to (i) integral quantities, such 76 

as the Darcy flux, as well as (ii) the structure of the velocity distributions, characterized through their 77 

empirical probability density function (PDF) and the associated key statistical moments, including 78 
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local correlations between velocity fields. These measurements are employed to probe in a statistical 79 

sense the internal similarities/differences across sample populations of velocities obtained for the two 80 

porous media analyzed using the three different computational systems. While the adopted 81 

methodologies are notably contrasting in terms of numerical schemes, our results show that they all 82 

produce results that are reasonably close to one another. In the case of the limestone sample, the 83 

structures of the velocity fields obtained using ANSYS FLUENT and EULAG are more alike than 84 

either with that obtained using SSTOKES. In the case of the sandstone sample, the structures of the 85 

velocity fields obtained by EULAG and SSTOKES are more like one another than either to the 86 

solution obtained using ANSYS FLUENT. So far as macroscopic quantities are concerned, ANSYS 87 

FLUENT and SSTOKES provide similar results in terms of the average vertical velocity for both of 88 

the complex micro-scale geometries considered, while EULAG tends to render larger velocity values 89 

with greater variability. The documented correspondence among the results supports the reliability of 90 

computational approaches to detailed pore-scale simulations. 91 

The remainder of the paper is divided into three main sections. Section 2 describes the two natural 92 

rock samples and the three modeling approaches in terms of geometrical description, mathematical 93 

formulation, and numerical techniques. Section 3 is devoted to the comparison of the results from the 94 

three different methodologies in terms of local and integral quantities. Concluding remarks are 95 

presented in Section 4. 96 

2 Methods 97 

2.1 Description of rock samples 98 

We study flow through samples of two different (natural) rocks: (a) an oolitic limestone from the 99 

Mondeville formation of the middle Jurassic age, and (b) a Fontainebleau sandstone, both from the 100 

Paris Basin (France). The overall dimensions of the analyzed blocks are 0.650.651.3 mm3, and 101 

we refer to them as the limestone sample and the sandstone sample. The limestone is composed of 102 

millimeter-scale recrystallized ooliths, partially cemented with micritic calcite [13]. The limestone 103 

sample was subject to carbonate dissolution performed under laboratory conditions that increased the 104 
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total connected porosity of the sample from about L  6.8% to L = 31.41%. The sandstone is a 105 

quasi-pure silica sandstone that is often used as a standard analog for sandstone reservoirs. Porosities 106 

of samples of these sandstones usually range from 5% to 30%, and grain sizes are relatively 107 

homogeneous, typically around 250 m [7]. The sandstone sample is characterized by a total 108 

connected porosity S = 7.05%. The porosity values provided here represent the connected pore 109 

network, i.e., the void space that connects the flow inlet and outlet boundaries.  110 

The three-dimensional structure of each sample is reconstructed via synchrotron X-ray micro-111 

tomography, with a voxel size of Δ 5.06 μmz   [14]. Both samples were imaged using the ID19 beam 112 

at the European Synchrotron Radiation Facility (Grenoble, France). Figure 1a illustrates the structure 113 

of the pore space of the limestone sample by means of a set of horizontal cross sections; Fig. 1b shows 114 

the vertical profile of surface porosity (each value is associated with a volume of size 0.65 mm0.65 115 

mmz) and Fig. 1c depicts the sample probability density functions of pore sizes, S, normalized by 116 

the grid step, evaluated along the three Cartesian axes, x, y and z and computed on the whole domain 117 

according to the methodology employed in [37]. Figure 2 depicts graphically the corresponding set 118 

of information for the sandstone rock. 119 

Surface porosities computed along horizontal planes range between 13% and 50% for the 120 

limestone and between 1.4% and 23% for the sandstone. Each sample exhibits an abrupt change in 121 

porosity starting a little further than midway down the sample column and ending well before the 122 

bottom, the limestone showing an anomalous region of low porosity and the sandstone showing an 123 

anomalously high porosity region. The empirical Probability Density Functions (PDFs) of pore sizes 124 

(Figs. 1c and 2c) reveal that each system is relatively isotropic. When plotted on a semi-logarithmic 125 

scale, the PDF tails display a clear exponential decay for an intermediate range of pore size values, 126 

analogously to what observed by [37] for synthetically generated pore structures. The range covered 127 

by the pore size values in the limestone (i.e., the medium with largest porosity) is wider than in the 128 

sandstone in all directions. 129 

2.2 Mathematical formulation of the flow problem 130 
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The governing equations for a single-phase, incompressible Newtonian fluid, i.e., water, fully-131 

saturating the pore space, are the transient Navier-Stokes equations, 132 

0v   (1) 133 

1v
v v g vp ν

t ρ


       


  (2) 134 

Here, Eqs. (1) and (2) respectively represent mass and momentum conservation; v  is the Eulerian 135 

fluid velocity vector, ν  is fluid kinematic viscosity, ρ  is fluid density, 0( )p p p    is relative 136 

pressure and (0,0, )g g   is gravity force (p, g, and 
0p  respectively being pressure, gravity and a 137 

constant reference pressure). Fluid density and kinematic viscosity are set respectively as 1025ρ   138 

kg m-3 and 
61 10ν    m2 s-1 for all simulations. No-slip boundary conditions, i.e., v = 0, are enforced 139 

along pore walls boundaries.  140 

The Reynolds number associated with flow through natural fractured and porous media is 141 

usually small enough to consider creeping-flow regime as a valid assumption [4, 11]. Under this 142 

assumption, the nonlinear term in Eq. (2) can be disregarded, and the governing equations are the 143 

incompressible Stokes equations, i.e.,  144 

1v
g vp ν

t ρ


     


  (3) 145 

together with Eq. (1) in the void space of the samples.  146 

2.3 Problem setting 147 

Comparisons among the ANSYS FLUENT, EULAG and SSTOKES computational models are 148 

performed at steady-state flow conditions for both rock samples considered. We define steady-state 149 

conditions to be reached when the following criteria are met. First, the relative difference between 150 

the average velocity magnitude observed at two consecutive time steps, symbolized as t and (t + 1), 151 

is such that  152 

-61
| | | |

< 10
| |

t t

t


v v

v
  (4) 153 
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  being sample average evaluated over all pore voxels. Second, the difference between the vertical 154 

(i.e., along direction z) component of velocity, w, observed at two consecutive time steps at 155 

corresponding nodal locations is such that 156 

6
| ( , , , 1) ( , , , ) |

10
| ( , , , ) |

w x y z t w x y z t

w x y z t


 



.

 (5) 157 

ANSYS FLUENT and EULAG solve Eqs. (1) and (2), while SSTOKES solves Eqs. (1) and (3). 158 

All flow simulations are performed in the discretized domains of size 128  128  256 voxels depicted 159 

in Figs. 1a and 2a. Impermeable boundary conditions are set on the lateral sides of the samples for all 160 

of the approaches. In each case flow is gravity driven (i.e., induced by g) and takes place 161 

predominantly in the vertical direction, z. Periodic boundary conditions are employed in EULAG, 162 

v(x, y, 0) = v(x, y, L), along the vertical direction, together with the corresponding periodic boundary 163 

conditions for the gradient of relative pressure in Eq. (1). Benefits of considering periodic boundaries 164 

include the ability to handle blocked flows in incompressible fluid settings and to ensure compatibility 165 

of initial conditions with the governing equations. It has to be noted that ensuring flow periodicity 166 

requires the (physical) domain to be periodic. With synthetically generated virtual media, system 167 

periodicity can be achieved during the generation process [20]. Periodicity for a real rock sample is 168 

achieved by mirroring the (generally non-periodic) sample image along the vertical direction. The 169 

resulting medium is then symmetric with respect to the middle horizontal plane. The same geometric 170 

model and periodic conditions are adopted for consistency within the ANSYS FLUENT and the 171 

SSTOKES software environments. As a result of this vertical mirroring, the size of each simulated 172 

system is 128  128  512 voxels. Only the results associated with the original sample with size 128 173 

 128  256 voxels are analyzed and presented in Section 3. 174 

2.4 Numerical Methods 175 

Major challenges for the direct simulation of flow in explicit pore structures include (a) the 176 

representation of the complicated geometry of the porous microstructure and (b) the enforcement of 177 
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no-slip boundary conditions along pore walls. Accurate representation of a pore space at the scale 178 

and resolution of interest associated with a binary digital image of pore spaces can be achieved using 179 

smooth, unstructured meshes and refined octree grids that conform to the geometry of the pore space 180 

[21, 49]. These variable resolution meshes can be refined along pore walls to resolve boundary layer 181 

effects in the flow field that occur at length scales smaller than the resolution of the imaged pore 182 

spaces. Generating conformal meshes to represent the intricate geometries that make up real porous 183 

microstructures is demanding, both in terms of computer memory and computational time. A first 184 

order accurate stair-step representation of the void space, where the pore space is discretized by 185 

structured hexahedral cells or cubic voxels, offers a meshing approach that partially overcomes these 186 

demands. Although the accuracy of the representation of the solid boundary is somewhat 187 

compromised, stair-stepping yields meshes that are efficient and low cost but accurate within bounds 188 

of computational error for simulations of flow through pore microstructures [18]. Gerbaux et al. [11] 189 

compared the performance of tetrahedral and hexagonal meshes, and concluded that the latter 190 

required less computational resources, with minimal discrepancies between the flow results. 191 

Analogous results stem from pore-scale flow simulations of Peszynska and Trykozko [32], who tested 192 

unstructured hexahedral and body-fitted mesh performances within the ANSYS FLUENT software 193 

environment.  194 

Once the mesh has been selected, no-slip boundary conditions can be directly enforced by 195 

spatially varying the difference stencil to conform with the pore space geometry. The efficient 196 

implementation of this approach still remains a critical challenge. A promising alternative is given by 197 

the immersed boundary method (IB) [27]. According to the latter, no-slip boundary conditions are 198 

enforced at the fluid-solid interface by inserting a fictitious forcing term into the governing equations 199 

of flow to mimic the resistance offered by the solid wall boundaries. The advantage of this approach 200 

is that a uniform Cartesian grid can be employed to simulate flow in complex pore spaces and the 201 

difference stencil is uniform throughout the computational domain. This uniformity makes the 202 

method well suited for existing and future HPC architectures, such as GPUs and MIC. The IB has 203 
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been successfully applied to two [24, 25] and three-dimensional [17, 18, 19, 36, 37, 43] simulations 204 

of flow in microscopic pore structures. 205 

Immersed boundary methods are naturally divided into continuous and discrete (or direct) forcing 206 

approaches, depending on the way the fictitious forcing term is implemented. In the continuous 207 

approach, the forcing term is included in the original continuous form of the governing equations, 208 

while in the discrete approach the fictitious boundary force is introduced after the equations have 209 

been discretized. Examples of the continuous forcing class include volume penalizing [1] and 210 

feedback forcing methods [12] that set the additional forcing term to be proportional to the flow 211 

velocity. An example of the discrete-forcing class of IB approaches is the ghost cell method [31, 46] 212 

where the computational (discretized) domain is partitioned into physical and ghost-cell sub-domains. 213 

The physical sub-domain contains only computational cells associated with the fluid, whereas 214 

computational cells that reside within the solid domain and have at least one neighboring cell in the 215 

fluid phase form the ghost-cell sub-domain. Velocity values are computed for each ghost cell through 216 

interpolation so that the desired boundary conditions at the fluid-solid interface are enforced on the 217 

basis of a "projection node" located within the fluid region. 218 

2.5 Computational Systems 219 

ANSYS FLUENT. The first computational system employed in this study is embedded in the 220 

ANSYS FLUENT software and uses a finite volume method to numerically integrate Eqs. (1) and (2) 221 

on a first-order hexagonal grid representation of the fluid domain. FLUENT is a commercial code 222 

maintained by ANSYS, Inc, (www.ansys.com). A segregated transient formulation using the non-223 

iterative Pressure Implicit Splitting of Operators (PISO) algorithm [2, 22] for pressure-velocity 224 

coupling is employed. The advection term in Eq. (2) is discretized using a second order upwind 225 

scheme developed for unstructured meshes and limiting the gradient of the advected quantity to avoid 226 

occurrence of new maxima or minima [3]. Pressure is discretized using a body force weighted scheme 227 

and linear second order accurate interpolations are used for the discretization of the viscous term [2]. 228 

All variables are collocated on the hexahedral mesh. The faces of the hexahedral elements lying at 229 
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the fluid-solid interface define the boundary position and no-slip conditions are set directly at the face 230 

center using the adopted finite volume method. The time step employed in the simulations performed 231 

with ANSYS FLUENT is Δt = 2.510-6 s. For this study, the code was run in parallel on 12 CPUs, 232 

on a Dell™ PowerEdge™ R410 machine, with 2x Intel® Xeon® X5670 (6 cores @ 2.93 GHz and 233 

32 GB of Ram). 234 

EULAG. The second system we use in this study is the modification of the EULAG system 235 

provided by Smolarkiewicz and Winter [43]. EULAG is open source and can be obtained by 236 

contacting the developers at http://www2.mmm.ucar.edu/eulag/. In this framework, no-slip boundary 237 

conditions are enforced using a continuous forcing IB method. Formally, a modification of the 238 

momentum equation (2) allows for the implicit enforcement of no-slip conditions along the fluid-239 

solid interface, 240 

v
v v g v v

ρ
π ν α

t ρ


      


 (6) 241 

As in Eq. (2), here primes refer to perturbations with respect to static ambient atmospheric conditions 242 

characterized by a constant density, 0ρ , and pressure, 0p , i.e., 
0( )π p p ρ    and 0ρ ρ ρ   , where 243 

0ρ const ρ   denotes the density of water. The fictitious repelling body force, vα , is inserted in 244 

the right side of the momentum equation (2) to circumvent the difficulty of generating a conforming 245 

mesh representation of the void space. In Eq. (6), ( )xα  vanishes when vector location x  is in the 246 

pore volume and is large otherwise. Intuitively, setting ( ) 0xα   within the pore volume admits 247 

Navier-Stokes flows away from the solid boundaries and Eq. (6) reduces to Eq. (2); on the other hand, 248 

requiring ( )xα  within the solid prevents flow therein [41, 43]. The governing system of Eqs. 249 

(1) and (6) is cast in the conservation form and integrated numerically at every computational node 250 

in the uniform Cartesian grid using a second-order-accurate, semi-implicit, non-oscillatory forward-251 

in-time (NFT) approach. Theoretical bases, implementation and applications of the approach are 252 

broadly documented [38, 39, 40, 42]. The NFT approach is a flux-form finite difference method, an 253 

equivalent of finite-volume approach on a Cartesian grid. The resolution is globally semi-implicit: 254 

http://www2.mmm.ucar.edu/eulag/
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convective and diffusive terms are solved explicitly, whereas all the forcing terms in Eq. (6) are dealt 255 

with implicitly using a preconditioned Krylov method to solve the resulting elliptic equation. Details 256 

of the discretized set of equations and of the numerical integration procedure are found in [43]. The 257 

EULAG code is run in parallel using 8 CPUs on the Dell™ PowerEdge™ R410 machine with 2x 258 

Intel® Xeon® X5670 (6 cores @ 2.93 GHz and 32 GB of Ram) for the limestone sample and using 259 

16 CPUs on the Dell™ PowerEdge™ R620 machine with 2x Intel® Xeon® E5-2680 (8 cores @ 2.70 260 

GHz and 64 GB of Ram) for the sandstone. For our simulations, we follow Smolarkiewicz et al. [43] 261 

and set 
1 8Δ / 2 2 10α t    s. This value is considerably smaller than the time scales associated with 262 

the effects of viscous and gravity forces evaluated at the grid scale, that are respectively 263 

2 5(Δ ) 2.5 10z ν   s and 
1/2 3(2Δ ) 1 10z g   s. 264 

SSTOKES. The third system we use is the SSTOKES code [35], which can be made available 265 

upon request. SSTOKES enforces internal boundary conditions using a discrete IB method, and the 266 

space and time derivatives of Eqs. (1) and (3) are discretized using second order centered-difference 267 

and forward-difference schemes respectively and solved implicitly. SSTOKES uses a staggered 268 

approach where pressure is defined at the cell center, and velocity components are considered along 269 

the cell faces. In this framework, velocities tangential to the solid boundary are not defined at the 270 

boundary itself. The ghost-cell IB method is used to enforce the no-slip boundary conditions along 271 

internal solid boundaries. At each time step, flow variables in the ghost cells outside of the void space 272 

are determined using linear interpolation with the neighboring image points inside of the void space 273 

to enforce no-slip conditions exactly along the void-solid interface. The computational mesh is a first 274 

order cubic stair-step approximation of the void space embedded within the solid phase. The 275 

computational parameters considered for the SSTOKES system are those controlling the convergence 276 

to a steady-state solution. The time step employed in the simulations performed with SSTOKES is 277 

8Δ 2 10t   s. The SSTOKES code is not parallelized. In this study, it was run on one core of the HP 278 

Z800 workstation equipped with 2x Intel® Xeon® E5-2680 (8 cores @ 2.7 GHz and 64 GB Ram). 279 
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2.6 Metrics for system comparison 280 

The analysis of the simulation results compares the capabilities of the three considered 281 

methodologies to simulate pore-scale flow fields in natural porous media at the millimeter scale. The 282 

local Eulerian vertical velocity component, w, is a key quantity of interest in the comparison due to 283 

its relevance in transport processes occurring at the scale of porous microstructure. The comparison 284 

of the steady-state flow fields is performed in terms of the structure of the velocity and pressure fields, 285 

the distribution of the vertical velocities, as well as integral quantities, namely the Darcy flux, ( )q z286 

computed at steady-state, i.e., 287 

( )

1

1
( )

PN z

i

i

q z w
N 

   (7) 288 

In Eq. (7), ( )PN z  is the number of nodes in the pore space of the horizontal plane at elevation z; N = 289 

16384 is the total number of nodes at a given horizontal cross section; iw  is the vertical component 290 

of the Eulerian velocity calculated at node i. Since nowadays we still do not have at our disposal high 291 

quality laboratory flow experimental data which can be employed for a point-by-point comparison 292 

against computed values in real rock samples of the size we consider, the structures of the resulting 293 

velocity fields are also compared in terms of their empirical probability density functions (PDFs) and 294 

associated main statistics. These include the coefficient of variation related to the calculated local 295 

velocities as well as the point wise cross-correlation coefficient between vertical velocity fields at 296 

every horizontal cross-section of the system, defined as 297 

  

i j

i i j j

ij

w w

w w w w
R

 

 
  (8) 298 

where i, j = E, S, or F (E, S, or F respectively denoting EULAG, STOKES, or FLUENT), and iw  299 

and 
iw  respectively are average and standard deviation of nodal values of wi computed across a 300 

given cross-section located at vertical elevation z. 301 
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When considered jointly with integral quantities, these metrics provide additional layers of 302 

information regarding the structure of the velocity fields and allow investigating in a statistical sense 303 

the similarities/differences between the distributions of velocity. The standard deviation provides 304 

information about the variability of the spatial distribution of the values of a given quantity, and the 305 

coefficient of variation is an indicator of the intrinsic variability resulting from each computational 306 

system after accounting for the multiplicative effect of the mean. The cross-correlation coefficient is 307 

a measure of the linear dependence between two variables and quantifies (in a statistical sense) the 308 

degree of similarity of the flow solutions obtained by two computational suites. A qualitative 309 

description and comparison of the contour plots of velocities of the cross sections is also provided. 310 

Flow statistics such as mean vertical velocity, standard deviation, and cross-correlation are calculated 311 

over the total number of nodes in the pore space, i.e., ( )PN z  within a cross-section, or ,P TOTN  for the 312 

entire volume. 313 

3 Results 314 

3.1 Mondeville limestone sample 315 

The three computational systems produce fluid velocities that are the same order of magnitude, 316 

i.e., 4 1O(10 m s )  . The Reynolds number Re = UL/, L and U respectively being the mean hydraulic 317 

radius and mean vertical velocity, is of order O(10-3)  for all approaches. 318 

It can be noted that EULAG produces higher average vertical velocities (by a factor of about 5/3) 319 

with more spatial variability than either SSTOKES or ANSYS FLUENT (Table 1). The mean values 320 

associated with SSTOKES and ANSYS FLUENT are essentially the same, and ANSYS FLUENT 321 

shows slightly enhanced overall variability with respect to SSTOKES. Values of the Coefficient of 322 

Variation (CV) obtained through all three systems are about the same, with ANSYS FLUENT 323 

yielding a slightly higher value than the other two. 324 

Linear correlations between horizontal cross-sections of vertical velocity fields produced by the 325 

simulation systems are high (> 0.85) at all elevations within the limestone sample (Fig. 3), indicating 326 
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a general agreement among the structures of the fields. This is consistent with the values of CV listed 327 

in Table 1. Nonetheless, the two-sample Kolmogorov–Smirnov test rejects the hypothesis that the 328 

simulated vertical velocities within a cross-section are from the same distribution at the 5% 329 

significance level. Correlations between EULAG and the other two systems are somewhat reduced at 330 

elevations ( 150 200 Δ )z   where a large decrease in local porosity is observed.  331 

Cross-sectional means and standard deviations of vertical velocities are consistent with the 332 

observed pattern resulting in higher velocity and variability for EULAG simulations than for the other 333 

two systems (Table 2). The results listed in Table 2 are associated with cross-sections which are all 334 

30 Δl z  apart. The mean values associated with ANSYS FLUENT and SSTOKES results coincide 335 

and ANSYS FLUENT simulations exhibit somewhat higher standard deviations than SSTOKES 336 

does. All three computational systems produce relatively higher (more negative) vertical velocities in 337 

the region of low porosity (e.g., at an elevation of about 180 z) than at other elevations, and all three 338 

show relatively lower (less negative) velocities at elevations (e.g., 215 z) where porosity is highest. 339 

Similar results (not reported) are obtained on other sets of cross-sections, extracted using the same 340 

criteria. Variability, as measured by standard deviation, follows the same pattern of relatively high 341 

variability where porosity is lowest (e.g., 180 z) and resistance to flow is highest and low variability 342 

where porosity is highest and resistance to flow is least. 343 

Contour plots of the vertical velocity component produced by each model in the plane at elevation 344 

z = 127 z produce similar patterns for the flow field, with EULAG exhibiting higher overall fluxes 345 

and more spatial variability in the velocity values than either SSTOKES or ANSYS FLUENT (Fig. 346 

4). In each case the majority of the velocity field is stagnant, or nearly so. This is consistent with the 347 

results of [17] who found that most of the flux through a sample of realizations of synthetically 348 

generated porous media occurs in a relatively small percentage of the pore volume. Regions of higher 349 

velocity in the upper left quadrant and lower middle part, indicated by dark color in Fig. 4, are more 350 

finely resolved by ANSYS FLUENT and EULAG than SSTOKES. The sharp gradients that form in 351 

the velocity field due to the variable resistance offered by the pore wall geometry are not as apparent 352 
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in the solution provided by SSTOKES. Qualitatively similar results are obtained for other planes (not 353 

shown). 354 

Scatter plots of values of w  computed at all nodes within the fluid region by the three 355 

methodologies are depicted in Figs. 5a-c. These plots illustrate the general agreement between the 356 

ANSYS FLUENT and SSTOKES estimates (values of w  distributed around the unit slope line) with 357 

EULAG estimates that are relatively higher than either (results that consistently lie below this line). 358 

Complementary scatter plots of nodal values of fluid pressure are depicted in Figs. 5d-f. These fall 359 

on the unit slope line indicating that the three methodologies produce consistently similar results for 360 

pressure. 361 

Empirical PDFs of horizontal velocities (u) and normalized vertical velocities ( w w ,   362 

representing sample average) are depicted in Fig. 6a-b. Both PDFs are based on estimates from the 363 

whole fluid domain. The horizontal velocity component along the y direction, v, displays similar 364 

behavior to u (not shown). Horizontal velocity components from all three simulations display 365 

symmetric distributions centered on zero. However, the PDF based on EULAG is characterized by 366 

higher tails, indicating a tendency to assign more probability to the tails of the distribution. The 367 

normalized vertical velocity component w w  exhibits clear positive skewness in all three 368 

examples, consistent with the gravity-driven flow regime studied. Following [37], a stretched 369 

exponential model is juxtaposed to the data in Fig. 6b: the decay of the tails of all three PDFs is 370 

consistent with this model, which includes the exponential trend (i.e. linear trend in semi-log scale) 371 

as a particular case. The occurrence of only a small fraction of nodes associated with an upward value 372 

of w (i.e., negative tail of the PDF) indicates that there is only a limited set of localized recirculation 373 

paths in the internal structure of the pore space. When normalized by the sample average, the tail of 374 

the PDF obtained using ANSYS FLUENT is slightly higher than that obtained via EULAG or 375 

SSTOKES, which is consistent with the CV values listed in Table 1. 376 
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The three methods yield values for the (macroscopic) mean Darcy flux, aveq , [Eq. (7), averaged 377 

over all horizontal cross sections] that are of the same order of magnitude (Table 3). Consistent with 378 

the results illustrated in Fig. 5, the estimation of aveq  provided by EULAG is larger than those 379 

provided by SSTOKES or ANSYS FLUENT. 380 

3.2 Fontainebleau sandstone sample 381 

In general, results of comparisons among simulated states are similar to those observed for the 382 

limestone. As in the case of the limestone medium, the three systems produce fluid velocities that are 383 

of the same order of magnitude, in this case 5 1O(10 m s )  , and Reynolds number, which is of order 384 

O(10-4). EULAG renders higher average vertical velocities (now by a factor of about 2) with more 385 

spatial variability than either SSTOKES or ANSYS FLUENT, as shown by the results listed in Table 386 

4. The mean values rendered by SSTOKES and ANSYS FLUENT are also essentially coinciding, 387 

with SSTOKES showing slightly more pronounced overall variability than ANSYS FLUENT. The 388 

CVs produced by all three systems are very similar also in this case, with SSTOKES yielding a 389 

slightly higher value than the ANSYS FLUENT or EULAG for this sample. Simulation results of 390 

vertical velocity in the sandstone medium are intrinsically more variable than those observed in the 391 

more porous limestone. 392 

Linear correlations between horizontal cross-sections of vertical velocity fields produced by the 393 

simulation systems are high (> 0.85) at all elevations, except over the set of elevations (~120-180 z) 394 

where porosity increases abruptly (Fig. 7). Correlations between all three pairs of the simulations are 395 

considerably reduced there, with the EULAG-SSTOKES pair being least affected. Similar to what is 396 

noticed for the limestone rock sample, the two-sample Kolmogorov-Smirnov test rejects the 397 

hypothesis that the simulated vertical velocities within any given cross-section are from the same 398 

distribution at the 5% significance level. 399 

Cross-sectional means and standard deviations of vertical velocities are in line with the general 400 

pattern of higher velocity and variability in EULAG simulations (Table 5). The means of ANSYS 401 
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FLUENT and SSTOKES estimates are again practically the same, but this time it is the SSTOKES 402 

simulations that exhibit somewhat higher standard deviations than ANSYS FLUENT. All three 403 

systems produce relatively lower (less negative) vertical velocities in the region of high porosity (e.g., 404 

at elevation z = 140 z) than at other elevations. Similar results (not reported) are obtained on other 405 

sets of cross-sections extracted using the same criteria as above. Variability, as measured by standard 406 

deviation, follows the same pattern of relatively high variation where porosity is lowest and resistance 407 

to flow is highest and low variability where porosity is highest and resistance to flow is least. 408 

Contour plots of simulated vertical velocities in the plane at the middle elevation z = 127 z 409 

produce roughly similar patterns for the flow field (Fig. 8). The majority of the velocity field is 410 

stagnant, or nearly so, with highest flows occurring in the middle of the large pore spanning the cross-411 

section and in the isolated pore toward the bottom, consistent with the observation of [17] that flow 412 

in pore spaces tends to occur in a relatively small percentage of the pore volume. EULAG exhibits 413 

higher flow overall and more variability than either SSTOKES or ANSYS FLUENT. 414 

Scatter plots of values of w  computed at all nodes within the fluid region by the three 415 

methodologies are depicted in Figs. 9a-c. As in the case of the limestone sample, these illustrate the 416 

general agreement between the ANSYS FLUENT and SSTOKES estimates, EULAG estimates being 417 

relatively higher than either. Scatter plots of nodal values of fluid pressure are depicted in Fig. 9d-f. 418 

These are close to the line of unit slope indicating again that the three methodologies produce 419 

consistently similar results for pressure. 420 

Empirical PDFs (Figure 10a-b) of horizontal, u, and normalized vertical, w w , velocities are 421 

based on estimates from the whole fluid domain, which is consistent with the analysis of the limestone 422 

sample. The PDF for u is symmetric and centered on zero, and EULAG distributes more probability 423 

to the tails of the distribution than either SSTOKES or ANSYS FLUENT. The normalized vertical 424 

velocity component is again skewed in the direction of flow. Figure 10b highlights that, similar to 425 

what observed for the limestone, the positive tails of the normalized velocity components decay 426 
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following a stretched exponential model [37]. In this case the tail of the PDF obtained using ANSYS 427 

FLUENT is slightly lower than that associated with the other two samples.  428 

The value of the mean Darcy flux aveq  provided by EULAG exceeds those resulting from 429 

SSTOKES and ANSYS FLUENT by a factor of about two (see Table 3). 430 

4 Summary and conclusions 431 

Direct numerical simulations of fully-saturated, gravity-driven flow are performed in millimeter-432 

scale digitally reconstructed images of a high-porosity (31%) limestone sample and a low-porosity 433 

(7%) sandstone sample using three different Eulerian approaches: (a) ANSYS FLUENT (b) the 434 

EULAG system, and (c) the SSTOKES code. These computational systems vary widely in terms of 435 

their algorithmic complexity and differ in terms of the associated numerical methodologies, 436 

enforcement of no-slip boundary conditions on internal walls, parallelization, and implementation of 437 

the Poisson solver. The resulting steady-state flow solutions are compared in terms of global 438 

quantities, the empirical probability density function (PDF) and associated main statistical moments 439 

of the local velocity fields. 440 

When performing comparisons of computational results obtained with diverse codes the notion 441 

of accuracy is poorly defined without a benchmark against which the solutions can be compared. 442 

Because nowadays we still do not have at our disposal high quality and high resolution laboratory 443 

flow experimental data against which a pointwise comparison of calculated quantities can be 444 

accomplished in real rock samples of the size we consider, it is virtually impossible to state without 445 

ambiguities if one solution is more accurate than another one. However, the distributions of velocity 446 

can be probed to assess similarities and differences between the computational methods. To do so, 447 

we consider the local structure of the velocity field, empirical PDFs of vertical and horizontal 448 

components of velocity and pressure, the first two moments of the velocity distributions, as well as 449 

the cross-correlation coefficient between the vertical velocities rendered by the codes we analyze at 450 

level planes. Beyond first order comparisons, such as the mean Darcy flux, the higher order moments 451 
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and cross-correlations provide information about the structure and similarities of the velocities fields 452 

in a statistical sense. 453 

Given that the methods are notably different in a number of ways, it is remarkable that they 454 

produce results that are reasonably close to one another. Using the metrics mentioned above it was 455 

observed that the simulation results are similar with respect to (i) the overall structure of the empirical 456 

PDF of horizontal and vertical velocity components (Figs. 6 and 10), (ii) the structure of the spatial 457 

distribution of velocities as revealed by cross-correlations (Figs. 3 and 7) and pattern (Figs. 4 and 8), 458 

and (iii) the magnitude of macroscopic parameters, specifically mean Darcy flux (Table 3), although 459 

they differ in details. Notably, the Darcy fluxes computed by the three methodologies are all of the 460 

same order of magnitude for a given sample. We note that in principle one could estimate Darcy flux 461 

on a rock core of characteristic length of the order of 10-3 m. A straightforward calculation shows that 462 

in case of such a rock sample the relative measurement errors on permeability and flux would be of 463 

about 130% and 250%, respectively. However, these estimates should only be considered as purely 464 

theoretical since setting up such measurements is highly difficult with currently available resources, 465 

due to (a) difficulties in the preparation of the sample and (b) the smallness of the pressure drop, 466 

which is notably complex to be measured. On the basis of these considerations, we conclude that 467 

Darcy flux values obtained using the computational suites considered would be within theoretical 468 

bounds associated with what would be a hypothetical laboratory experiment on millimeter-scale 469 

samples. 470 

The three simulation environments produce steady-state flow fields that differ in their local 471 

details. When considering the pore-scale quantities associated with the Mondeville limestone, the 472 

similarity between the solutions obtained using ANSYS FLUENT and EULAG suggests that steep 473 

gradients in the velocity field, which result from the wider pores and non-uniform resistance offered 474 

by the variable geometry of the pore space, are more finely resolved when the nonlinear term in the 475 

Navier-Stokes equations is retained (Figs. 3 and 4). In the case of the Fontainebleau sandstone, the 476 

structure of the velocity fields obtained using EULAG and SSTOKES agree more than either does 477 
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with ANSYS FLUENT (Figs. 7 and 8). In this low porosity sample, solutions obtained using EULAG 478 

and SSTOKES capture the spatial influence of the geometry and topology of the pore space on the 479 

velocity field. 480 

When considering up-scaling of flow solutions to macroscopic quantities, including Darcy flux 481 

and thus permeability, the most relevant difference among the methodologies is the relatively large 482 

flow velocities computed by EULAG compared to ANSYS FLUENT and SSTOKES (Figs. 5 and 9 483 

and Table 3). We also note that if simulation of pore-scale flow is aimed at understanding the 484 

influence of pore space geometry and topology on local fluid dynamics, then EULAG appears to 485 

provide consistent results with respect to structure and variability of the velocity fields in these two 486 

samples. The computed Reynolds numbers, O(10-3/10-4), might not be completely consistent with the 487 

assumptions upon which the Stokes equation rests. The observed difference in Darcy flux between 488 

EULAG and FLUENT could also result from the adopted numerical scheme to resolve the advective 489 

term in the corresponding momentum equations. FLUENT uses an upwinding scheme, which are 490 

numerically diffusive, and could result in the underestimation of the flux due to numerical diffusion. 491 

Otherwise, EULAG uses a nonlinear flux-limiting advection scheme to resolve high gradients and 492 

minimize numerical diffusion, which is consistent with the highest value obtained for the Darcy flux. 493 

This notwithstanding, we remark that the computed values could still be considered as comprised 494 

within theoretical laboratory measurement error bounds, as discussed above. 495 

When compared across the two media investigated here, the Darcy fluxes in the limestone (see 496 

Table 3) sample are larger than those computed for the sandstone, consistent with the significant 497 

difference between the porosities (31% to 7%) of the two rock samples. The associated empirical 498 

PDFs of horizontal components, u, and normalized vertical components, w w , of velocity are 499 

qualitatively similar (Figs. 6 and 10). The positive skewness of the PDFs of w w  obtained from all 500 

three simulations (Figs. 6b and 10b) reflects the dominant downward direction (i.e., in the direction 501 

of the negative z-axis) of flow, consistent with the gravity-driven flow regime studied. In general the 502 

three computational systems analyzed produce normalized vertical velocities exhibiting about the 503 
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same level of variability. This similarity indicates that the intrinsic variability of the results among 504 

these computational systems arises primarily from a multiplicative effect that is cancelled through 505 

normalization by the means. The small fraction of nodes associated with a positive value of w (the 506 

negative tail of the PDF) suggests that there is only a limited set of localized recirculation paths in 507 

the pore spaces of both media. The tails corresponding to simulated values of u produced by EULAG 508 

are larger in both media than the tails associated with ANSYS FLUENT or SSTOKES (Figs. 6a and 509 

10a). This is consistent with observations of generally higher degree of heterogeneity of the state of 510 

flow arising from the EULAG-based simulations. 511 

As a general conclusion, these comparisons indicate that the three computational systems 512 

produce consistent estimates of the state of flow through explicit natural porous microstructures. This 513 

is observed despite the considerable differences among the three solution techniques. The 514 

correspondence among the results supports the reliability of employing computational approaches to 515 

perform detailed simulations of flow dynamics in complex pore spaces of the kind associated with 516 

high definition imaged rock systems which are becoming increasingly available due to the 517 

advancement of digital rock physics techniques. 518 
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 636 

TABLES 637 

Table 1 Mean, Standard Deviation (SD), and Coefficient of Variation (CV) of vertical velocity 638 

summed over all points in the pore space of the Mondeville limestone sample.  639 

 Mean (×10-4 m s-1) SD (×10-4 m s-1) CV 

EULAG 3.23 4.55 1.41 

SSTOKES 1.93 2.76 1.43 

ANSYS FLUENT 1.93 3.00 1.55 

 640 

Table 2 Mean and Standard Deviation (SD) computed for four selected cross sections of the 641 

Mondeville limestone sample.  642 

 Mean (× 10-4 m s-1) SD (×10-4 m s-1) 

LEVEL EULAG SSTOKES 
ANSYS 

FLUENT 
EULAG  SSTOKES 

ANSYS 

FLUENT 

65 3.35 2.02 2.02 3.56 2.26 2.42 

120 3.81 2.30 2.30 5.83 3.79 4.02 

180 6.88 4.01 3.99 7.95 4.48 5.05 

215 2.00 1.20 1.22 2.59 1.56 1.81 

 643 

 644 

Table 3 Comparison of mean Darcy flux computed using the three methodologies analyzed. 645 

 Mondeville 

Limestone 

Fontainebleau 

Sandstone 

Model 
aveq  (×10-5 m s-1) aveq  (10-6 m s-1) 

EULAG 9.97 -2.16 

SSTOKES 6.06 -1.04 

ANSYS FLUENT 6.08 -1.13 

 646 

 647 

 648 
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Table 4 Mean, Standard Deviation (SD), and Coefficient of Variation (CV) of vertical velocity 649 

summed over all points in the pore space of the Fontainebleau sandstone sample. 650 

 Mean (×10-5 m s-1) SD (×10-5 m s-1) CV 

EULAG 3.07 7.90 2.57 

SSTOKES 1.48 4.45 3.01 

ANSYS FLUENT 1.60 3.81 2.38 

 651 

 652 

 653 

Table 5 Mean and Standard Deviation (SD) of vertical velocity computed on four selected cross 654 

sections of the Fontainebleau sandstone sample. 655 

 Mean (× 10-5 m s-1) SD (×10-5 m s-1) 

LEVEL EULAG SSTOKES 
ANSYS 

FLUENT 
EULAG  SSTOKES 

ANSYS 

FLUENT 

50 0.57 0.28 0.25 0.46 0.27 0.19 

100 0.46 0.23 0.24 1.44 0.81 0.71 

140 0.11 0.05 0.07 0.19 0.11 0.11 

200 0.52 0.26 0.26 1.68 0.99 0.84 

 656 

  657 

658 
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FIGURES 659 

 660 

Fig. 1 Mondeville limestone: (a) Horizontal cross sections, white regions represent the pore space; 661 

(b) Vertical distribution of surface porosity; (c) empirical Probability Density Functions (PDFs) of 662 

pore sizes, S, normalized by the grid step, Δz  = 5.06 μm, evaluated along the three Cartesian axes, x, 663 

y and z, and computed on the whole domain. 664 

 665 

Fig. 2 Fontainebleau sandstone: (a) Horizontal cross sections, white regions represent the pore space; 666 

(b) Vertical distribution of surface porosity; (c) empirical Probability Density Functions (PDFs) of 667 

pore sizes, S, normalized by the grid step, Δz  = 5.06 μm, evaluated along the three Cartesian axes, x, 668 

y and z, and computed on the whole domain. 669 
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 670 

Fig. 3 Mondeville limestone. Cross-correlation coefficients R by vertical level of the cross-section 671 

(here wE, wS, and wF respectively denote vertical velocities computed by means of EULAG, 672 

SSTOKES or ANSYS FLUENT). The vertical profile of porosity, , is also reported.  673 

 674 

Fig. 4 Spatial distribution of the vertical velocity component, w, obtained by (a) ANSYS FLUENT, 675 

(b) EULAG, and (c) SSTOKES along the plane at elevation 127z z   of Mondeville limestone. 676 


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 677 

Fig. 5 Scatter diagrams of values of (a-c) w  and (d-f) p computed at the nodes within the fluid region 678 

by the three methodologies analyzed for Mondeville limestone. 679 

 680 

Fig. 6 Empirical PDF of (a) u and (b) w w - where  represents sample average - computed over 681 

the whole fluid domain with the three methodologies analyzed for Mondeville limestone. 682 

 683 
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 684 

Fig. 7 Fontainebleau sandstone. Cross-correlation coefficients R by vertical level of the cross section 685 

(here wE, wS, and wF respectively denote vertical velocities computed by means of EULAG, 686 

SSTOKES or ANSYS FLUENT). The vertical profile of porosity, , is also reported. 687 

 688 

Fig. 8 Spatial distribution of the vertical velocity component, w, obtained by (a) ANSYS FLUENT, 689 

(b) EULAG, and (c) SSTOKES along the plane at elevation 127z z   of Fontainebleau sandstone. 690 


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 691 

Fig. 9 Scatter diagrams of values of (a-c) w  and (d-f) p, computed at the nodes within the fluid 692 

region by the three methodologies analyzed for Fontainebleau sandstone. 693 

 694 

Fig. 10 Empirical PDF of (a) u and (b) w w - where  represents sample average - computed over 695 

the whole fluid domain with the three methodologies analyzed for Fontainebleau sandstone. 696 

 697 


