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Abstract. Effective preconditioning lies at the heart of multiscale flow
simulation, including a broad range of geoscientific applications that rely
on semi-implicit integrations of the governing PDEs. For such problems,
conditioning of the resulting sparse linear operator directly responds to
the squared ratio of largest and smallest spatial scales represented in the
model. For thin-spherical-shell geometry of the Earth atmosphere the
condition number is enormous, upon which implicit preconditioning is
imperative to eliminate the stiffness resulting from relatively fine ver-
tical resolution. Furthermore, the anisotropy due to the meridians con-
vergence in standard latitude-longitude discretizations becomes equally
detrimental as the horizontal resolution increases to capture nonhydro-
static dynamics. Herein, we discuss a class of effective preconditioners
based on the parallel ADI approach. The approach has been implemented
in the established high-performance all-scale model EULAG with flexible
computational domain distribution, including a 3D processor array. The
efficacy of the approach is demonstrated in the context of an archetypal
simulation of global weather.
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1 Introduction

Modern numerical solvers, integrating complex and multiscale problems at the
frontiers of geo- and astro-physics, constitute indispensable virtual laboratory for
investigating inherently irreplicable phenomena, where traditional experimental
approach becomes either impractical, infeasible or even entirely inapplicable.
Many of these solvers target a particular range of scales and are essential for
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industrial or specialized scientific applications, such as Earth System Models for
climate research, numerical forecasts suites from global- to meso-scale weather,
down to small-scale CFD type models for cloud turbulence and wind engineer-
ing. In turn, multiscale solvers capable of integrating PDEs at scales from micro
to stellar advance fundamental research in geo and astrophysics, contributing
to understanding fundamental physical laws governing nonlinear phenomena.
With the continuous advancement in supercomputing and the Big Data, spatial
and temporal resolution increases and specialized applications are capable of
capturing increasingly broader range of scales. This motivates further develop-
ment and application of robust and accurate numerical techniques, capable of
exploring finer scales admitted by improved resolution.

A notable example of such multiscale, multiphysics solver is an established
model EULAG [12,19],1 recently extended to include a consistent soundproof-
compressible formulation of PDEs governing atmospheric dynamics [20]. Highly
efficient parallel formulation of EULAG with a 3D MPI domain distribution has
been reported in [10].

Explicit integration of the fully compressible atmospheric equations is imprac-
tical due to the inherent stability limits related to rapid propagation of acoustic
modes. Various numerical techniques, often relying on the operator splitting, are
used to mitigate this problem. Effectively, they employ specialized implicit integra-
tion schemes applied to selected terms in the flow PDEs. Adopted mathematical
simplifications may require solution filtering, possibly leading to numerical arte-
facts [9]. In turn, fully implicit techniques like Newton-Krylov solvers may be pro-
hibitively expensive. Among the variety of existing methods, the recently reported
consistent formulation of the EULAG numerics appear especially prospective as it
allows for efficient multiscale integrations using robust forward-in-time integrators
and preconditioned nonsymmetric Krylov-subspace solvers.

In realistic multiscale applications, the elliptic Poisson and Helmholtz bound-
ary value problems (corresponding to soundproof and compressible formulation
of the governing PDEs) are nonsymmetric, semi-definite, poorly conditioned and
complicated. This may result from the anisotropy of grid resolution, planetary
rotation, ambient large scale gradients and stratification, the use of curvilinear
coordinates, or the imposition of partial-slip conditions along irregular lower
boundaries. Despite enormous advancements in numerical methods for sparse
linear systems, the effective solution of large linear problems depends (at least
for the class of problems discussed) not necessarily on the choice of the best
available iterative method, but rather on the artful preconditioning.

In global models, anisotropy of the Earth’s atmosphere results in the condi-
tion number κ ∼ O(1010), or larger. Because the asymptotic convergence rate of
conjugate gradient type methods is proportional to

√
κ, the use of directly invert-

ible preconditioner that removes the stiffness associated with a relatively fine
vertical resolution is imperative [17]. To date, the Generalized Conjugate Resid-
ual (GCR) Krylov solver of EULAG was supported by a deflation technique, in

1 For comprehensive list of EULAG publications see model webpage at http://www2.
mmm.ucar.edu/eulag/.

http://www2.mmm.ucar.edu/eulag/
http://www2.mmm.ucar.edu/eulag/
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which splitting the preconditioner into implicit and explicit counterparts in the
vertical and horizontal, respectively, lead to subsequent direct inversion in the
vertical of the explicit horizontal part [22]. Variants with spectral decomposition
in the horizontal were also considered [18,23].

ADI methods per se date back to the nineteen fifties [2], and their use as
preconditioners for Krylov solvers in atmospheric models was advocated nearly
two decades ago [15,22]. However, with the transition to massively parallel com-
puting, parallel implementation of tridiagonal algorithms underlying the ADI
approach has been dismissed (e.g., in favour of the deflation technique as spec-
ified above), especially that vertical direction in atmospheric codes remained
standardly serial — for the sake of radiation and precipitation processes, inher-
ently sequential in nature and difficult to parallelize. Notwithstanding, more
recently it become clear that at the exascale computing mere parallelization
in the horizontal may be insufficient. The recent development of the 3D paral-
lelization in EULAG brought parallel tridiagonal algorithms and paved the way
for high-performance ADI preconditioners. Further acceleration of variational
Krylov solvers is important, in order to minimize their global reductions antic-
ipated at the exascale computing. In this context ADI preconditioners appear
promising and worthy exploring. This seems to be reflected in their ceaseless
popularity in the current literature.

2 Model Framework

2.1 Analytic Formulation

The consistent formulation of EULAG’s governing equations casts (and solves)
the governing PDEs in generalized time-dependent curvilinear coordinates
(t,x) ≡ (

t, F (t,x)
)
, where the coordinates (t,x) of the physical space are orthog-

onal and stationary, but not necessarily Cartesian. In particular, global simu-
lations employ the standard anholonomic latitude-longitude (lat-lon) spherical
framework (Sect. 7.2 in [3]) for the physical space [12,19], in which components
of the physical velocity vector are aligned at every point of the spherical shell
with axes of a local Cartesian frame tangent to the lower surface of the shell;
cf. Fig. 7.7 in [3]. For simplicity of the presentation, here we dismiss the time-
dependency of the model coordinates; so, (t,x) ≡ (

t, F (x)
)

in the formulae that
follow. The governing equations for the physical velocity u = (u, v, w) and the
potential temperature θ can compactly be written as

du
dt

= −Θ G̃∇ϕ − gΥB
θ′

θb
− f × (u − ΥCue) + M′(u,u) + Dv, (1)

dθ′

dt
= −u∗ · ∇θe + Dθ, (2)

d�

dt
= − �

G ∇ · Gu∗. (3)
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Here, the generalized density and pressure variables � and ϕ are defined, respec-
tively, for the [anelastic, compressible] PDEs as

� := [ρb(z), ρ(x, t)] , ϕ := [cpθbπ
′, cpθ0π

′], (4)

where ρ and π denote the fluid density and the Exner pressure. The dimensionless
coefficients are defined as

Θ :=
[
1,

θ(x, t)
θ0

]
, ΥB :=

[
1,

θb(z)
θe(x)

]
, ΥC :=

[
1,

θ(x, t))
θe(x)

]
. (5)

On the LHS of (1) and (2), the total derivative d/dt = ∂/∂t + u∗ · ∇, where
u∗ = dx/dt is the contravariant velocity in the computational space. The nabla
operator ∇ ≡ ∂/∂x represents the vector of partial derivatives corresponding to
elementary finite differences in the model code. In the momentum Eq. (1), G̃ sym-
bolizes a renormalized Jacobian matrix of the metric coefficients ∝ (∂x/∂x). The
terms M(. , .) in (1) denote metric forces (viz. the generic Christoffel terms in the
physical space), whereas f is the Coriolis acceleration, and D symbolizes the dis-
sipation/diffusion operator. Subscript e refers to an ambient state, a particular
solution to (1)–(3), while subscript b marks the anelastic base state [6]. The con-
travariant and physical velocities are related via

u∗ = G̃Tu, (6)

and G2
is the determinant of the metric tensor that defines the fundamental

metric in the computational space.

2.2 Highlights of Numerical Approximations

Here we provide an outline of the nonoscillatory forward-in-time (NFT) numer-
ical approximation strategy of EULAG. For comprehensive discussion and
algorithmical details the interested reader is referred to [20] and references
therein. The numerics of EULAG are unique, in that they rely on the
Lagrangian/Eulerian congruence of governing equations integrated with the
trapezoidal rule along flow trajectory in the 4D time-space continuum. In tech-
nical terms, however, the hydrodynamical solver of EULAG is reminiscent of the
projection approach [1], where evaluation of an explicit part of the velocity uexp

is followed by the implicit completion of the solution, tantamount to the formu-
lation and solution to the discrete boundary value problem (BVP) for pressure.2

In particular, Eqs. (1)–(3) are cast in the conservation-law form of generalized
transport equation for specific variable ψ (e.g. velocity component or potential
temperature):

∂G�ψ

∂t
+ ∇ · (G�u∗ψ) = G�R, (7)

2 This second step can be iterated when nonlinear terms resulting from, e.g., metric
forces are present; cf. [19] for illustrative examples.
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are integrated in time and space using MPDATA approach,3 that provides a
robust integrator for the entire system of the governing PDEs, including consis-
tent formulation of a discrete BVP. The latter constraints the complete solution
such as to assure that the updated solution satisfies the discrete mass continuity
Eq. (3). In particular for the anelastic system, (3) takes an incompressible-like
form

1
ρ∗ ∇ · ρ∗u∗ = 0, (8)

where ρ∗ = Gρb. therefore implying the Poisson BVP for ϕ

− Δt

ρ∗
∂

∂xj

[
ρ∗E

(
Ṽj − C̃jk ∂ϕ

∂xk

)]
= 0. (9)

The problem in (9) can be though of as L(ϕ) − R = 0, wherein E and C̃jk

denote 10 fields of known coefficients that generally vary in time and space; EṼj

is the jth component of the explicit part of contravariant velocity solution; and
repeating k indices imply the summation over the components of ∇ϕ; see [11]
for the exposition. The multiplicative factor −Δt/ρ∗ assures the formal negative
semi-definiteness of L and expresses the residual error r = L(ϕ) − R �= 0 as the
divergence of a local Courant number on the grid. Notably, for the compressible
solver, the resulting Helmholtz BVP is composed of three Poisson-like operators
and the term proportional to ϕ [20]. In either case, the resulting BVP is solved
(subject to appropriate boundary conditions) using the GCR approach [4,21] —
a robust preconditioned nonsymmetric Krylov-subspace solver akin to GMRES
[14]. Given the updated pressure, and hence the updated contravariant velocity,
the updated physical velocity components are constructed from (6).

A key element of our GCR machinery is the (left) operator preconditioning
providing an estimate of the solution error q = ϕ − ϕexact as

q = P−1(r), (10)

where the preconditioner P ≈ L but is easier to invert than the L. In EULAG, P
closely matches L by only neglecting the cross derivative terms with coefficients
C̃jk

∣
∣
k �=j

. In the remainder of the paper we elaborate on technical aspects of (10).

3 Implicit Inversion Preconditioning

3.1 Principles

Standard EULAG preconditioning relies on the direct inversion of the vertical
component of the implicit operator, while evaluating horizontal part of the oper-
ator explicitly using a stationary Richardson iteration

qμ+1 − qμ

Δτ
= P zqμ+1 + Phqμ − rν , (11)

3 MPDATA (for multidimensional positive definite advection transport algorithm) is
a class of nonoscillatory forward-in-time flow solvers, widely documented in the lit-
erature; for a recent overview see [20] and references therein.
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where P z and Ph symbolize vertical and horizontal parts of P = P z +Ph; Δτ is
a fixed pseudo-time step (selected such as to assure convergence of the iterative
process; μ numbers preconditioner’s iterations (usually a few to several), and
rν is the residual error of the Krylov solver’s νth iteration. Gathering all qμ+1

terms on the LHS, leads to the tridiagonal problem

(Δτ−1I − P z)qμ+1 = Δτ−1qμ + Phqμ − rν := r̃, (12)

readily invertible with the Thomas algorithm concisely symbolized as

qμ+1 = (Δτ−1I − P z)−1r̃ (13)

The developed ADI preconditioners enable extending the standard precon-
ditioner (11) to admit implicitness in Ph and, thus, accelerate the convergence
by increasing Δτ . In particular, a two-dimensional ADI design leaves only sin-
gle explicit direction. When operating on the global lat-lon grid, the natural
choice is to treat the longitudinal direction implicitly, as the meridians converg-
ing towards poles can introduce considerable anisotropy in the coefficients of the
horizontal operator Ph. While numerous formulations of a 2D ADI are possible,
a particularly simple algorithm was provided by Peaceman and Rachford [8],

qμ+ 1
2 − qμ

Δτ2
= P xqμ+ 1

2 + P zqμ + P yqμ − rν ,

qμ+1 − qμ+ 1
2

Δτ2
= P xqμ+ 1

2 + P zqμ+1 + P yqμ − rν , (14)

where P x and P y symbolize, respectively, the longitude and latitude counter-
parts of Ph = P x + P y. To extend (14) to all three directions, we adopt the
unconditionally stable 3D ADI Douglas [2] algorithm

qµ+1
3 −qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P yqμ +P zqμ −rν ,

qµ+2
3 −qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P y (qµ+2

3 +qµ)
2 +P zqμ −rν ,

qµ+1−qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P y (qµ+2

3 +qµ)
2 +P z (qµ+1+qµ)

2 −rν .

(15)

Grouping all implicit terms of (14) and (15) on the LHS, as in (12), shows
that all three preconditioners share a common template algorithm

qμ∗ = (Δτ̃−1
i I − P I)−1r̃∗ (16)

for the tridiagonal solver in I = x, y, z directions at some intermediate step μ∗. r̃∗

denotes the corresponding explicit elements of (14) and (15).4 This substantiates
the earlier assertion that the parallel implementation of the tri-diagonal inversion
in one direction paves the way for the family of ADI preconditioners.

4 Note that τ̃i = τi for (11)–(14) but τ̃i = τi/2 in the (15).
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3.2 Parallel Implementation

At the highest level, the implementation of algorithms (11)–(15) in EULAG
follows the mathematical notation. Notably, as the first guess qμ=0 = 0, the init-
laisation of the algorithms needs bespoke script to avoid unnecessary memory
references. In particular, since ∀I P Iqμ=0 = 0 in the first preconditioner itera-
tion, it is only necessary to evaluate half of the explicit members of (11)–(15).
Furthermore, the algorithms (11)–(15) can be judiciously mixed, whereupon we
evaluate all members of the preconditioner family as they all can be useful in
different classes of applications.

The BVP problems in EULAG rarely can be solved in single GCR itera-
tion. For compressible equations the problem matrix is constant within given
timestep. For anelastic equations in stationary coordinates it remains constant
throughout the entire integration time. Inspection of the standard tridiagonal
algorithm suggests that it is possible to precompute a good part of its forward
step. Consequently, all variants of preconditioners in EULAG begin with a suit-
able initialization executed either once per simulation or time step, depending
on the application at hand. This requires relatively large additional storage that
is, however, rarely an issue, on the modern CPU clusters.5

The parallel tridiagonal inversion, if implemented in the form of naive parallel
recurrence, suffers from the adverse load balance characteristics, i.e. only one core
in the column may be active at the time. However, it is fairly easy to mitigate
this problem if using two cores in vertical. With the given horizontal subdomain,
at half of the gridpoints the forward tridiagonal sweep starts from one boundary
while the remaining columns are evaluated from the forward sweep starting from
the opposite boundary. Importantly, this technique does not noticeably alter the
physical results. If the use of larger number of cores in the direction of tridiagonal
inversion is needed and the cost of computations per core is significant, it is
possible to use Pipelined Thomas Algorithm aiming at quickest possible fill of
pipeline of computing cores in given direction. This is done by splitting the
processor subdomain into chunks and communicating the results to the next
core as soon as recurrence (acting in direction normal to the chunk surface) is
executed; see Sect. 2 in [10] and references therein. While this strategy seems to
be efficient for low speed computing cores, such as employed by IBM Bluegene/L
architecture, we found the strategy in the spirit of recursive doubling [24] to be
more effective on modern CPU clusters. The Thomas algorithm as employed for
the A-grid discretization of EULAG for nonperiodic boundary conditions has
the general form

ek = Ak/ (Bk − Ckek−2) (17)
fk = Dk(ek)fk−2 + Qk(ek, rhsADI) (18)
pk = ekpk+2 + fk (19)

5 For the majority of geophysical applications, the main performance bottleneck is the
memory bandwidth and access time, and not the main memory size. The latter is
usually much larger than needed, as large number of timesteps and good scalability
lead to routine use of hundreds of computing cores and tens of supercomputer nodes.
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where k is indexes either x,y or z direction, A,B,C are known 3D matrices, D
is a function of ek and Q is a function of instantaneous right hand side rhsADI

at a given step of an algorithm at hand from the suite (11)–(15). Because ek

can be precomputed, this allows to express last element of the recurrence by the
first or the second element of the recurrence, for the last k index allowed being
odd and even, respectively. For example, for the recurrence split in four-element
segments

ak = bkak−2 + ck = bkbk−2ak−4 + bkck−2 + ck. (20)

The auxiliary product bkbk−2 and the remaining bkck−2 + ck term can be pre-
computed at additional cost, but in fully parallel way. This reduces the cost of
purely sequential part of the algorithm (per “chunk surface” gridpoint in com-
putational subdomain) to single multiply/add operation along with the three
memory loads and single store and we will later refer to it as LFF (Last From
First) operation. For the whole computational domain the parallel tridiagonal
algorithm employs two possible forms, on the sequence of nproc computational
cores denoted as subscripts in a given direction

LFF1 → SEND1 to 2 → LFF2 → ... → SENDnproc−1 to nproc → LFFnproc

or a variant employing one-dimensional MPI Gather/Scatter operations

MPIgatherinput for LFF → ∀1,nprocLFF → MPIscatterLFF results.

Ultimately, the choice of optimal parallel inversion strategy depends on the prob-
lem and the computing architecture at hand.

4 Computational Efficiency and Performance

The suite of the preconditioners has been benchmarked for the baroclinic insta-
bility experiment (BAROC) [5], an archetype of the global weather. Details
of BAROC implementation in EULAG are presented in [13] together with the
grid convergence study and the comparison against the hydrostatic solutions
in [5]. Further studies of BAROC included simulations with anelastic, pseudo-
incompressible and fully compressible equations [20] using several explicit and
implicit formulations of either flux-form Eulerian of semi-Lagrangian EULAG
integrators.

The model setup assumes the analytically prescribed ambient state consisting
of two mid-latitude zonal jets symmetric about the equator that are in unstable
thermal wind equilibrium with the corresponding meridional distribution of the
potential temperature. Initial velocity field is locally perturbed at the northern
hemisphere, leading to the development of the instability manifested with the
fastest growing eastward propagating Rossby mode of wavenumber 6. For illus-
tration, the top panels of Fig. 1 show surface θ′ solutions using anelastic and
compressible PDEs. Evident frontogenesis is similar to the observed weather
systems at the planetary scales.6

6 For a discussion of the differences in various soundproof and compressible solutions
see [20] and references therein.
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Fig. 1. Anelastic (left) and compressible (right) solutions for the baroclinic instability
benchmark at day 8. Top panels display the isolines of surface potential temperature
perturbation, overlaid with the flow vectors, on a regular longitude-latitude grid. Con-
tour intervals are 4 K, dashed/solid lines correspond to negative/positive contour val-
ues, and zero contour lines are not shown. Zonally averaged profiles to the right of the
contour plots depict mean kinetic energy over the full 10-day integration. Middle panels
refer to the model run employing standard preconditioner (11) with 3 preconditioner
iterations per each GCR iteration. The contour plots show the vertically averaged 10-
day-mean residual errors, with their zonally averaged profiles appearing on the right.
The bottom panels convey corresponding measures for the runs employing ADI precon-
ditioner (14) with one preconditioner iteration per each GCR iteration. Contour values
in the middle and bottom panels refer to the fraction of maximum allowed residual
error rmax = 10−7; cf. [9] and the accompanying discussion.

The reported calculations employ a coarse lon-lat “research” grid 128 × 64
(corresponding to 2.8o horizontal resolution) and 23 Km deep atmosphere
resolved with 48 equally spaced vertical levels. The implicit solver employs
physically-based stopping criteria [16] and iterates until the L∞ norm of the
residual error is no larger than 10−7; i.e., orders of magnitude smaller than max-
imal Courant number � 1. All calculations use 2880 timesteps with δt = 300 s.
The resulting residual errors displayed in Fig. 1, for the runs using three iter-
ations of the standard preconditioner (11) and the runs using one iteration of
the two directional ADI preconditioner (14), document substantial improvement
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in the solution accuracy for the latter. In particular, mean residual error in the
runs with the standard preconditioner evinces a signature of nonlinear processes
occurring in the northern hemisphere, which is dramatically reduced in the runs
with one ADI x-z pass per each GCR iteration. Similarly, effects due to meridian
convergence and the refined Δx are practically removed, except in the immedi-
ate proximity of the poles. Interestingly, tests conducted with the fully implicit
ADI preconditioner (15) essentially show no further improvement compared to
ADI x-z [7].

Table 1. Performance of the standard (11) and ADI (14) preconditioners for the anelas-
tic and compressible BAROC experiment, presented in the middle and bottom panels
of Fig. 1, respectively. First column identifies the governing PDEs and the precondi-
tioner used. Subsequent columns list: time-to-solution (TTS); time spent in elliptic
solver (TES); time spent in the preconditioner (TPR), all in seconds; and the total
number of the linear operator evaluations (NLE).

PDE; preconditioner TTS TES TPR NLE

Anelastic; standard 102 80 35 175386

Anelastic; ADI x-z 48 34 13 105245

Compressible; standard 61 36 20 52593

Compressible; ADI x-z 52 30 12 58225

Table 1 summarizes computational performance of the runs illustrated in
Fig. 1. All experiments were performed on the Cray XC30 “Piz Daint” at CSCS,
using Cray Fortran compiler with strong optimization options, “-O aggress,
cache3, scalar3, fp3, ipa5, vector3, thread0”. Standard preconditioner runs were
distributed in a 16×8×1 processor array, whereas ADI x-z runs used a 2×16×4
array. The latter distribution was motivated by the fact that the tridiagonal
solver is more expensive for periodic x direction than in the non-periodic z
direction. The total cost of model integration is reflected in the second column,
showing that the ADI x-z runs are altogether 50 % cheaper in the anelastic sim-
ulations, and 15 % cheaper in the compressible simulations. This discrepancy
in the performance improvement results from the much lower overall number
of the linear operator evaluations in the compressible case, regardless of the
preconditioner used. Although the GCR performs 10% more iterations in the
compressible run with the ADI x-z than with the standard preconditioner, the
overall performance is improved due to the lower cost of evaluating the precon-
ditioner itself.

5 Remarks

It is often emphasized that regular lat-lon grids are disadvantageous for global
modeling, because the meridians convergence near the poles necessitates small
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timesteps to assure computational stability and impairs conditioning of the lin-
ear operator in semi-implicit flow solvers (thus resulting in a poor performance
of iterative elliptic solvers). The first aspect can be circumvented by resort-
ing to semi-implicit semi-Lagrangian integrators. Here we addressed the second
aspect and showed that it can be mitigated with ADI preconditioners employing
implicit inversions in x and z directions. In particular, for highly anisotropic
grids, this permits much larger preconditioner’s pseudo-timestep τ (e.g., 40 and
10 larger with ADI x-z in the discussed anelastic and compressible runs, respec-
tively), leading to significantly faster convergence of the elliptic solver and con-
sequently to reduction of the time-to-solution. Benefits of ADI preconditioning
are expected to be even more pronounced when MPI parallelization scheme of
EULAG will be supplemented by the shared memory decomposition.
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