
On the role of topological complexity in spontaneous development

of current sheets

Sanjay Kumar1, R. Bhattacharyya1, and P. K. Smolarkiewicz2

1 Udaipur Solar Observatory, Physical Research Laboratory,

Dewali, Bari Road, Udaipur-313001, India and

2 European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK.

(Dated: July 16, 2015)

Abstract

The computations presented in this work aim to asses the importance of field line interlacing

on spontaneous development of current sheets. From Parker’s magnetostatic theorem such de-

velopment of current sheets is inevitable in a topologically complex magnetofluid, with infinite

electrical conductivity, at equilibrium. Relevant initial value problems are constructed by super-

position of two untwisted component fields, each component field being represented by a pair of

global magnetic flux surface. The intensity of field line interlacing is then specified by the relative

amplitude of the two superposed fields. The computations are performed by varying this relative

amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution

of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the

demonstration that initial field lines having intense interlacing tend to develop current sheets which

are distributed throughout the computational domain with no preference for topologically favorable

sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to

favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field

line or different field lines come to close proximity. However, for less intensely interlaced field lines,

the simulations indicate development of current sheets at sites only where the magnetic topology

is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines

press onto each other.

PACS numbers: 52.25.Xz, 52.30.Cv, 52.35.Vd, 95.30.Qd
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I. INTRODUCTION

According to Parker’s magnetostatic theorem [1–4], formation of tangential discontinu-

ities, or current sheets (CSs), is inevitable in an equilibrium magnetofluid with infinite

electrical conductivity and complex magnetic topology. This development of CSs is at-

tributed to a general failure of magnetic field in achieving force balance everywhere and

simultaneously preserving its topology, while remaining spatially continuous. Such CSs also

develop in a magnetofluid undergoing topology preserving evolution toward an equilibrium,

if the topology is complex. This requirement of topological complexity in onset of CSs is

inherent to the magnetostatic theorem. In its skeletal form, the theorem utilizes relaxation

of a magnetofluid with infinite electrical conductivity and low plasma β to obtain a terminal

magnetic field B satisfying

∇×B = α(r)B, (1)

where α(r) is a scalar function of position and represents magnetic circulation per unit flux

[3]. The solenoidality of B further restricts α(r) to obey

B · ∇α(r) = 0, (2)

resulting in the stringent condition that the magnetic circulation per unit flux for each

magnetic field line (MFL) is constant along that MFL. It is then expected that different

MFLs located at the neighborhood of a given field line will be wrapped around it. An

extension of this wrapping to every MFL leads to interlaced field lines, which we identify as

a measure of topological complexity. From (1) it is straightforward to identify this interlacing

with a non-zero field-aligned current quantified by J·B, where J = ∇×B is the total volume

current density. Further arguments establish these MFLs satisfying (1) to have opposite

chiralities at different locations and thereby violate the constancy of α(r) along a field line.

The magnetostatic theorem provides a circumvention of this violation by generating CSs

across which the magnetic field is discontinuous. Notably, the ubiquity of (2) associates a

connotation of spontaneity to the development of these CSs.

Such spontaneous development of CSs is also intuitive in an evolving magnetofluid with

infinite electrical conductivity where the Alfvèn ’s flux-freezing theorem [5] is satisfied and

MFLs at every instant are tied to fluid parcels. The evolution of a surface generated by the
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loci of these field lines, a magnetic flux surface (MFS), is then identical in motion to a fluid

surface identified by the fluid parcels to which these MFLs are tied. Under forcing, this fluid

surface along with the corresponding MFS contorts, and develops CSs if the contortion is

favorable [9]. In high Reynolds number (RM = vL/η, in usual notations) magnetofluids like

astrophysical plasmas, the CSs are natural sites where the magnetofluid gets locally diffusive

because of a reduction in characteristic length L. The MFLs across a CS then undergo

magnetic reconnection (MR), generating mass outflow and heat [4]. After reconnection, the

condition of flux-freezing is restored, resulting in an expunge of reconnected MFLs frozen

to the mass outflow. These reconnected field lines push onto other MFLs and may create

secondary CSs which lead to further reconnections. In a recent numerical demonstration [6],

this formation of secondary CSs and subsequent reconnections were identified as a possible

cause for generating various magnetic structures, some duplicating magnetic antics of the

Sun. The process of secondary CS development and their decay through MRs, is then

expected to be continued — intermittent in space and time — until the magnetic energy

achieves an allowable lower bound. In Taylor’s theory of single-fluid relaxation this lower

bound of the magnetic energy is determined by an approximate preservation of magnetic

helicity [7], leading to a terminal state characterized by (1) but with a constant α. More

general magnetohydrodynamic relaxation theories, of which the Taylor relaxation is a special

case; can be formulated by using two-fluid MHD equations. The details can be found in [8]

and references therein. These two complementary processes, the development of CSs and the

following relaxation through MRs, may account for dynamically shaping up the magnetic

topology of high RM magnetofluids.

With the above scenario in mind, it is important to assess the role of magnetic topology,

quantified by the intensity of filed line interlacing, in determining potential sites for MRs

through formation of CSs. In a recent numerical work [9] these sites of CSs are found to

be away from any two or three dimensional magnetic nulls with contortions of MFSs being

responsible for their development. While in another set of numerical experiments [10, 11],

the locations of CS formation are identified to be either at the immediate neighborhood of

magnetic nulls or across magnetic field reversal layers. Since development of CSs at favorable

locations lacks the notion of spontaneity, it is then indicative that formation of CSs away

from either the nulls or field-reversal layers are in better agreement with the magnetostatic

theorem. Thus, a plausibility is to divide numerical demonstrations of CS formation into
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two broad categories. The one consists of the CSs developing at the favorable locations,

and the other of CSs distributed throughout the computational domain with no apparent

preference for location. Against the above backdrop, the objective is to relate intensity of

interlacing with properties of developing CSs within the scope of the above two categories.

To achieve this objective, we track viscous relaxation of an incompressible, thermally ho-

mogeneous magnetofluid with infinite electrical conductivity; as it successfully demonstrates

CS formation in diverse magnetic topologies with different boundary conditions. The dy-

namics is determined by the MHD Naviar-Stokes equations

ρ0

(
∂v

∂t
+ (v · ∇)v

)
= µ0∇2v +

1

4π
(∇×B)×B−∇p, (3)

∇ · v = 0, (4)

∂B

∂t
= ∇× (v ×B), (5)

∇ ·B = 0, (6)

in standard notations, where ρ0 and µ0 are uniform density and coefficient of viscosity

respectively. For simplification, we consider only the systems periodic in all three Cartesian

co-ordinates. From an initial nonequilibrium, this magnetofluid is allowed to relax toward

a terminal state by converting magnetic energy WM to kinetic energy WK via

dWK

dt
=

∫
1

4π
[(∇×B)×B] · v d3x−

∫
µ0 |∇ × v|2 d3x, (7)

dWM

dt
= −

∫
1

4π
[(∇×B)×B] · v d3x, (8)

dWT

dt
= −

∫
µ0 |∇ × v|2 d3x, (9)

the integrals being over a full period. Since the Lorentz force is conservative, the kinetic

energy is dissipated via viscous drag. In absence of magnetic diffusivity, the condition of

flux-freezing holds and the end state is expected to be in magnetostatic equilibrium, identical

in magnetic topology to the initial state. The magnetostatic theorem then demands sponta-

neous development of CSs in the terminal state if the initial magnetic field is topologically

complex, which we ensure by constructing relevant initial value problems (IVPs).

We organize the paper in the following order. In section II we introduce the relevant IVPs,

while numerical model is discussed in section III. The section IV is dedicated to results and
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discussions. In section V we summarize these results and highlights the important findings.

II. INITIAL VALUE PROBLEM

The initial value problem is constructed by realizing that a magnetic field with non-

interlaced field lines can be written as [10, 14]

B1 = W (ψ1, ϕ1)∇ψ1 ×∇ϕ1, (10)

where ψ1 and ϕ1 are two scalar functions of position, known as Euler Potentials (EP) [12, 13]

and the amplitude W is an explicit function of ψ1 and ϕ1. The solenoidality of B1 is evident

from the above expression. Because the field aligned current J1 ·B1 = 0, the field lines of B1

are closed curves. In addition, with conditions B1 ·∇ψ1 = B1 ·∇ϕ1 = 0 being satisfied, level

sets of ψ1 and ϕ1 are global MFSs, the intersections of which generate magnetic field lines.

It is noteworthy that B1, in general, has a nonzero J1 and hence although untwisted, is not

a potential field. Interlaced field lines are generated by superposing B1 with another B2,

represented by a separate pair of EPs {ψ2, ϕ2} and having an amplitudeW2. The superposed

field B is given by

B = B1 + ϵ0B2, (11)

= (∇ψ1 ×∇ϕ1) + ϵ0 (∇ψ2 ×∇ϕ2) , (12)

where the amplitudes W1 = W2 = 1 and the constant ϵ0 is related to the intensity of

interlacing. Notably, a representation of any magnetic field by superposition of two untwisted

or non-interlaced component fields is not general enough, and at least three such component

fields are required to represent an arbitrary magnetic field; cf. recent review [14]. Our

specific choice (11) of two component fields for the purpose of superposition is based only

on having a single parameter ϵ0 to alter the intensity of interlacing. Based on our previous

work [9], we select the following EPs

ψ1(x, y, z) = a0 cos x sin z, (13)

ϕ1(x, y, z) = a0 cos y, (14)

5



and

ψ2(x, y, z) = a0 sin x sin y, (15)

ϕ2(x, y, z) = −a0 cos z, (16)

with an amplitude a0 and defined in an uniform triply periodic Cartesian domain of period

2π. Figures 1(a) and 1(b) illustrate the level sets of the above EPs in pairs, (ψ1, ϕ1) and

(ψ2, ϕ2) respectively for a0 = 1, with ψ-constant surfaces in color grey and ϕ-constant

surfaces in color red. The closed lines generated by intersection of the two surfaces are

MFLs which are untwisted, as can easily be verified from their appearances. To further

facilitate visualization, we overlay Figure 1 with y = π plane depicted in color green. Also,

in this and subsequent figures, the arrows in colors red, green, and blue depict the directions

x, y, and z respectively.

From (12), the initial component fields H1 = {H1x, H1y, H1z} and H2 = {H2x, H2y, H2z}

are

H1x = a0
2 cos x sin y cos z, (17)

H1y = 0, (18)

H1z = a0
2 sin x sin y sin z, (19)

and

H2x = a0
2 sin x cos y sin z, (20)

H2y = −a02 cosx sin y sin z, (21)

H2z = 0. (22)

The superposed field H = {Hx, Hy, Hz} is

Hx = a0
2 (cosx sin y cos z + ϵ0 sinx cos y sin z) , (23)

Hy = −a02 (ϵ0 cos x sin y sin z) , (24)

Hz = a0
2 (sinx sin y sin z) . (25)
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The Lorentz force exerted by H is

Lx = a0
4

[(
ϵ20 − 1

)
sin 2x sin2 y sin2 z −

(ϵ0
4

)
cos 2x sin 2y sin 2z

]
, (26)

Ly = a0
4

[(
ϵ20 −

1

2

)
sin2 x sin 2y sin2 z −

(ϵ0
4

)
sin 2x cos 2y sin 2z

−
(
1

2

)
cos2 x sin 2y cos2 z

]
, (27)

Lz = −a04
[(

ϵ20
2
− 1

)
cos2 x sin2 y sin 2z +

(ϵ0
4

)
sin 2x sin 2y cos 2z

+

(
ϵ20
2

)
sin2 x cos2 y sin 2z

]
. (28)

Noting the initial Lorentz force to be a function of ϵ0, the amplitude a0 is adjusted to perform

computations with initial fields having different ϵ0 but identical magnitude of average Lorentz

force.

The field-aligned current density and the global magnetic helicity for H are

(∇×H) ·H = a0
4ϵ0(sin

2 x cos2 y sin2 z + cos2 x sin2 y cos2 z + 2 sin2 y sin2 z), (29)

KM = 2a0
4ϵ0π

3, (30)

which reveal that they are directly proportional to ϵ0. The global magnetic helicity is

calculated here using the classical expression

KM =

∫
A ·HdV, (31)

with A as vector potential, the integral being over a full period, and a constant gauge.

Discussions on KM for more general cases can be found in [15] and [16]. The global mag-

netic helicity is a measure of interlinkages between MFLs and hence, is explicitly related to

interlacing of field lines. The direct proportionality to ϵ0 in (29) and (30) is affirmative of

an increase in interlacing, and hence making MFLs of H more topologically complex. The

above inference can further be validated from Figure 2 which visually clarifies an increase

of interlacing in MFLs with ascending values of ϵ0.

To facilitate presentation, in the following we discuss the topology of H in relation to

ϵ0. In Figure 3, we plot MFLs of H for four separate values: ϵ0 = {0.1, 0.3, 0.5, 0.7} in the

vicinity of y = π plane. Features evident in this figure are helical MFLs for ϵ0 = 0.1, and the
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deviation of MFLs from this helical structure with an increase of ϵ0 culminating into MFLs

depicted in panels b, c and d. To explain these features we revert to equations (23)-(25) and

note that for ϵ0 = 0, the field lines of H are closed disjoint curves tangential to y-constant

planes (since the component Hy is zero). For any other ϵ0, the component field H2 provides

a nonzero Hy resulting in lifting up MFLs of H out of the y constant planes. In addition, a

nonzero ϵ0 contributes to the component Hx. The net result is then a deformation of MFLs

in directions both perpendicular and parallel to y-constant planes. For a small value of ϵ0

this deformation is also small, resulting in helical field lines with projections on y-constant

planes similar in geometry to the closed curves of ϵ0 = 0. Larger values of ϵ0 deform field

lines more, leading to MFLs depicted in panels b, c and d. A first order Taylor expansion

of equations (23)-(25) near the y = π plane for constant x and z yields

Hx = −a02ϵ0 sin x0 sin z0 − a0
2 (y − π) cos x0 cos z0, (32)

Hy = a0
2ϵ0 (y − π) cos x0 sin z0, (33)

Hz = −a02 (y − π) sinx0 sin z0, (34)

evincing Hy and Hz to flip sign across the y = π plane. However for ϵ0 ̸= 0, Hx flips sign at

y = π − y1 where y1 satisfies the condition

y1 >
ϵ0 sin x0 sin z0
cos x0 cos z0

. (35)

A pair of oppositely directed MFLs across y = π plane are shifted by y1, which in turn

increases with ϵ0 (Fig. 3), rendering an initial H with larger ϵ0 less favorable to develop

CSs.

Further insight into topology of the initial field is gained by constructing its skeleton in

terms of magnetic nulls, since these are the sites where development of CSs are expected.

To illustrate the nulls, following [11] we employ the condition H ≡ {Hx, Hy, Hz} = 0 in a

Gaussian construct

χ(x, y, z) = exp

[
−

∑
i=x,y,z

(Hi(x, y, z)−H0)
2

d0

]
. (36)

where
√
d0 determines width of the Gaussian and H0 represents a particular isovalue of

Hx, Hy, and Hz. By choosing H0 ≈ 0 and a small d0, the function χ(x, y, z) ̸= 0 only
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if Hi ≈ H0 for each i. The three dimensional (3D) nulls are the points where the three

isosurfaces Hx = H0, Hy = H0, Hz = H0 intersect. It should be noted that at the immediate

vicinity of a 3D null all the three components of magnetic field is nonzero. Similarly, a two

dimensional (2D) null in a 3D coordinate space can be described as a line of intersection

between H0 isosurfaces of two nonzero magnetic field components while the third component

is trivially zero at this line. Using the above technique, in Figure 4 we have depicted nulls

of H for ϵ0 = 0.5 by selecting parameters H0 = 0.01 and d0 = 0.05. The accuracy of the

depiction can easily be verified from the analytical expression of H in equations (23)-(25).

The Figure 4 straightaway confirms only the presence of 2D nulls in the form of lines and

a complete absence of 3D nulls. Similar results (not shown) are obtained for the other ϵ0

values.

To further identify the 2D nulls, we expand components of H in a Taylor series in the

immediate vicinity of x = π/2, z = π for a constant y to get

Hx = a0
2
(
x− π

2

)
sin y0 − a0

2 (z − π) ϵ0 cos y0, (37)

Hy = 0, (38)

Hz = −a02 (z − π) sin y0. (39)

Notably, the non-zero components Hx and Hz have point antisymmetry about co-ordinates

x = π/2, z = π along the y-line rendering every point on it to be a X-type neutral point.

The MFLs near two such neutral points are shown in the inset (Fig. 4). Similarly the z-line

(extending in z-direction) is also X-type neutral line. Moreover, the Taylor series expansion

of components field in the immediate neighborhood of y = π, z = π for a constant x yields,

Hx = a0
2 (y − π) cos x0 − a0

2 (z − π) ϵ0 sin x0, (40)

Hy = 0, (41)

Hz = 0, (42)

thus confirming the line along the x-axis with co-ordinates y = z = π to be a neutral line.
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III. NUMERICAL MODEL

Under the condition of flux freezing, the time evolution of the EPs ψi, ϕi (i = 1, 2) are

governed by simple advection equations [9, 10]

dψi

dt
= 0, (43)

dϕi

dt
= 0, (44)

implying

∂ψi

∂t
+ v · ∇ψi = 0, (45)

∂ϕi

∂t
+ v · ∇ϕi = 0. (46)

Any numerical calculation utilizing advection of MFSs requires satisfaction of the flux-

freezing condition to a high fidelity. The computational requirement is then a minimization

of numerically generated dissipation and dispersion errors. Such a minimization is a sig-

nature of a class of inherently nonlinear “high-resolution” transport methods that conserve

field extrema along flow trajectories while ensuring higher order accuracy away from steep

gradients in the advected fields. For our calculations we adapt the MHD version [17] of

the well established general-purpose hydrodynamic model EULAG predominantly used in

atmospheric and climate research [18, 19].

For completeness, here we summarize only the crucial features of the EP based MHD

version of the EULAG; the details are in [10]. This model is based on the spatio-temporally

second order accurate nonoscillatory forward-in-time (NFT) advection scheme MPDATA

(Multidimensional Positive Definite Advection Transport Algorithm) [19]. A feature impor-

tant to MPDATA and relevant to our calculations is its proven dissipative property which

is intermittent and adaptive to generation of under-resolved scales in field variables for a

fixed grid resolution. As the CS develops, the magnetic field gradient increases unbound-

edly and a fixed grid resolution becomes insufficient in presence of these high gradients. The

MPDATA then removes these under-resolved scales by generating a locally-effective residual

dissipation of the second order, sufficient to maintain solution monotonicity. This intermit-

tency and adaptiveness is effective in implicit large-eddy simulation (ILES) that mimics the
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action of explicit subgrid-scale turbulence models, whenever the concerned advective field

is under-resolved [20]. Utilizing this ILES scheme, Ghizaru and coworkers have successfully

simulated regular solar cycles [21], while rotational torsional oscillations in a global solar

dynamo were characterized and analyzed [22]. The present understanding along with, open

questions on modeling the solar dynamo are summarized in reference [23]. Furthermore, in

the recent works [6, 11], this ILES mode was successfully used to obtain numerically induced

MRs that lead to secondary CSs. In the present computations, we follow evolution of MFSs

until onsets of such MRs to ensure satisfaction of the flux-freezing to a high fidelity.

IV. RESULTS AND DISCUSSIONS

The results are presented for numerical computations carried out with zero initial veloc-

ity and ϵ0 in the range of {0.1, 0.7}, in steps of 0.1. The computational grid has uniform

resolution of 1283 and corresponds to a physical volume of (2π)3. The coefficient of viscosity

and the mass density are set to µ0 = 0.008 and ρ0 = 1 respectively. When released from an

initial non-equilibrium state, the dynamics develops because of an imbalance between the

Lorentz force and the pressure gradient with zero initial value. The resulting increase in

velocity gets arrested by viscous drag and the magnetofluid relaxes toward a quasi-steady

state while preserving its magnetic topology. For a general understanding of this viscous

relaxation, Figure 5 plots the histories of kinetic and magnetic energies for ϵ0 = 0.1, nor-

malized to the initial total (magnetic +kinetic) energy. The development of the peak in

kinetic energy centered at t = 20s is due to the viscous arrest. The quasi-steady phase of

the evolution is in the temporal range t ∈ {60s, 120s} and is characterized by an almost

constant kinetic energy, while the change in magnetic energy is restricted to 13% of its total

variation. For other values of ϵ0, the magnetic and kinetic energy curves show the same

qualitative behavior but with different timing and amplitudes (not shown).

The accuracy of computations is assessed in Figure 6 displaying numerical deviations of

normalized kinetic (dashed line) and magnetic (solid line) energy rates from their analytical

values in (7) and (8). The displayed deviations are for different ϵ0 values: ϵ0 = 0.1, 0.3, 0.5,

and 0.7, which we have selected as the representative cases. The plots confirm the numerical

accuracy to be maintained with acceptable precision; the maximal deviation being 0.0002

(panel d). This accurate maintenance of energy rates denies any possibility of numerical MRs
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and hence, confirms the preservation of magnetic topology throughout the computations.

The overall tendency to form CSs can be established from panels a and b of Figure

7, plotting the evolution of average total current density <| J |> and maximal value of

| J | respectively. We denote the latter by Jmax and the current densities in the plots are

normalized to their initial values. Notable is their tendency to increase, albeit without

monotonicity, from the respective initial values. Because for every ϵ0 the average component

current density <| J2 |>=<| ∇ × H2 |> shows a monotonous increase, and the scalar

product < J1 · J2 > (where J1 = ∇×H1) remains negative (cf. panels a and b of Fig. 8)

throughout evolution, this lack of monotonicity in <| J |> is exclusively due to contribution

from the <| J1 |> (panel c, Fig. 8). Similar analysis (not shown) yields contributions from

the corresponding maximum | J1 | to be responsible for the lack of monotonicity in Jmax.

Additional computations are performed for different uniform grid resolutions varying

from 963 to 1603 in steps of 163, with ϵ0 = 0.1 and ϵ0 = 0.5 as the representative cases. The

resulting plots (Fig. 9) document scaling of Jmax with resolution, which points in favor of

CS formations [24]. Moreover, the scaling is stronger for ϵ0 = 0.1, where the y = π plane is

favorable for CS formation. In contrast, for ϵ0 = 0.5, with no apparent favorable location

for CS formation, the scaling is weaker. Such comparative scaling is a signature of scenarios

where CSs develop at three dimensional magnetic nulls against CSs developing away from

the nulls [25–27].

To identify and locate onset of CSs, in the following we further analyze the four cases

separately. The analyzes are for the computations with 1283 grid resolution where we follow

appearances and geometries of the isosurface of | J |, referred hereafter as J − 50, with

an isovalue which is 50% of maximum | J | for each ϵ0. Also to facilitate the general

understanding, we overlay these isosurfaces with magnetic nulls.

A. Case (I) ϵ0 = 0.1

The evolution of the corresponding J − 50 surfaces overlaid with magnetic nulls is il-

lustrated in Figure 10. Based on their shape, these surfaces can be classified into two

geometrically distinct categories: the open surfaces appearing at the y = π plane and the

elongated closed surfaces distributed sparsely in the volume. Evident from the MFL evo-

lution depicted in Figure 11, the open surfaces are the CSs developed by two antiparallel
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complimentary field lines approaching toward the y = π plane. Additionally, the figure

identifies generation of the closed J − 50 surfaces to an increase in the local number density

of parallel field lines, resulting in an increase in | H | and hence | J |. A sharpening of field

gradient playing no role in the generation, the closed surfaces do not qualify as CSs.

B. Case (II) ϵ0 = 0.3

To complement results of Case I, here we analyze J − 50 surfaces for computation with

ϵ0 = 0.3. In Figure 12, we illustrate the history of J − 50 surfaces overlaid with magnetic

nulls. It is evident from the figure that most of the J − 50 surfaces are elongated closed

structures similar to the case of ϵ0 = 0.1. In addition, development of localized current

layers at the y = π plane is noted. Like the previous case, here also an enhancement in

density of parallel MFLs is responsible for a local increase in magnitude of J, leading to the

formation of these closed current surfaces. More importantly, Figure 12 indicates a delay in

the generation of CSs in comparison to the earlier case. This is expected since the initial

topology of field lines for larger ϵ0 is less favorable and hence, two oppositely directed MFLs

require additional push to onset the J − 50 surfaces. Also, the spatial extension of these

CSs is lesser compared to the case I.

C. Case (III) ϵ0 = 0.5

With ϵ0 = 0.5, the initial favorable topology around y = π plane is almost destroyed

and the MFLs are interlaced everywhere (panel c, Fig. 2). The appearances of J − 50

surface (overlaid with magnetic nulls) is depicted in Figure 13. The J − 50 surfaces start to

appear around t = 32s and in their initial phase of evolution are closed surfaces, suggesting

a localized increase in | H |. With time, these closed surfaces become increasingly open;

generating CSs in the form of helices extended along the y direction and patches located at

the y = π plane. Importantly these CSs are located away from the magnetic nulls.

To understand this development of CSs away from the magnetic nulls, the time evolution

of appropriate Euler surfaces and selected isosurfaces of | J1 | and | J2 | is explored in the

following. Considering the negative contribution from J1 · J2, we set the optimal isovalues

to 40% of the maximum of | J1 | or | J2 |, depending on the component current density
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under consideration. These isosurfaces are nomneclatured as J1 − 40 and J2 − 40 surfaces

respectively. The Figure 14 illustrates a snapshot of J1−40 surfaces at the instant t = 112s,

displayed in the half computational domain z ∈ {0, π}. Notably, the J1 − 40 surfaces are

also in the forms of helices and patches (marked by downward arrows), structurally similar

and co-located to the J − 50 surfaces. This structural similarity and co-located appearance

ascertains the J1 − 40 surfaces to be major contributors toward the development of J − 50

surfaces. The helical J1 − 40 surfaces originate from favorable contortions of ψ1 − constant

Euler surfaces, evident from the Figure 15. However, the patches are due to contortions of

ϕ1 − constant Euler surfaces near the y = π plane (cf. Figure 16). Identical contortions of

ψ2 − constant and ϕ2 − constant Euler surfaces generate the corresponding J2 − 40 surfaces

(not shown).

D. Case (IV) ϵ0 = 0.7

In this case, the initial MFLs are interlaced more strongly (panel d, Fig. 2). To com-

plement the findings in Case (III), in Figure 17 we depict appearances of J − 50 surface.

Evidently, these surfaces are initially closed and hence are due to local enhancements in

| H |. Later in their evolution, these surfaces become open and morphed into CSs. In

comparison to the previous case, these CSs are distributed more extensively in the compu-

tational domain and hence, signify that more intensely interlaced field lines produce CSs

with lesser preference for locations; a finding which is in conformity with the magnetostatic

theorem.

Figure 18 shows the J − 50 surfaces at t = 112s, plotted in the half computational

domain. Like the previous case, these J − 50 surfaces can also be classified into helices and

patches (marked by the upward arrows). To explain their origin, in Figure 19 we illustrate

the corresponding J1 − 40 surface at the instant t = 112s. The figure confirms, the helical

J − 50 surfaces owe their origin to a development of J1 − 40 surfaces. Further, Figure 20

relates the onset of these J1 − 40 surfaces to contortions of ψ1 − constant Euler surfaces.

The development of the patches is attributed to J2 − 40 surfaces, as suggested by Figure

21 that depicts evolution of a single J2 − 40 surface located at the immediate vicinity of a

patch. The figure is overlaid with evolution of ϕ2 − constant Euler surfaces co-located to

the J2 − 40 surface. From the figure, it is clear that the onset of J2 − 40 surfaces are due to
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contortions of the ϕ2 − constant Euler surface.

In view of the above discussion, the comparative scaling documented in Figure 9, can now

be put into its proper perspective. The intensity of CSs developing at favorable locations

(cases I and II) have stronger scaling with resolution than the intensity of CSs that develop

in absence of favorable locations (cases III and IV). In a recent work, Craig and Effenberger

[25] found similar comparative scaling in the scenario of CS formation at 3D nulls against

CS formation at quasi-separatrix layers (QSLs). The QSLs are regions where the magnetic

connectivity between a pair of boundaries changes drastically [28]. Along with separators

[29, 30], QSLs are known to be the sites, away from nulls, where CSs can develop [25, 31].

It is then imperative to seek QSLs in H and their relation to CS formation.

In Figure 22, we plot MFLs at the immediate vicinity of a helical CS for ϵ0 = 0.5. The

plots are for instants t = 0s and t = 112s. The figure documents the connectivity of two sets

of MFLs (in colors red and cyan) connecting plane C with planes D and E. The different

connectivities of the two sets are evident from the figure. With CS (marked in color blue)

being co-located with the layer where the connectivity changes, existence of QSL structures

containing the CS is suggested. A comparison between the two instants further reports

MFLs to get more helical with development of the CS, indicating causality between the

favorable contortions and the dynamics of QSLs — an important problem that demands

separate work.

V. SUMMARY

In this work, we asses the importance of complexity in magnetic topology on development

of CSs. The initial magnetic field is constructed by superposing two untwisted fields, where

each field is represented by a pair of global magnetic flux surfaces. The magnetic field lines of

the superposed field are interlaced and the intensity of interlacing increases with the relative

amplitude ϵ0 of the component fields. The particular initial field used here, enables us to

divide the magnetic topology into two broad categories: one with favorable MFL geometry

having complementary field lines directed anti-parallel to each other across the y = π plane;

and the other with interlaced field lines without any such favorable geometry. The numerical

computations are performed in a triply periodic uniform Cartesian grid and simulate the

viscous relaxation of an incompressible, thermally homogeneous magnetofluid with infinite
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electrical conductivity. Moreover, to get a direct visualization of CS formation we advect

magnetic flux surfaces instead of the more traditional vector magnetic field.

The numerical precision in preservation of the initial magnetic topology is ensured by the

second-order-accuracy of non-oscillatory advection scheme MPDATA. The overall tendency

to form CSs is confirmed by the history of component average current densities for different

ϵ0. To identify the locations of CSs in the computation domain and obtain a detail under-

standing, we analyze the evolution of isosurfaces of total current density having sufficiently

high value. For smaller ϵ0 (i.e. for ϵ0=0.1 and 0.3), the analyzes establish generation of

CSs at the y = π plane which is location favorable to CS development. With an increase

of ϵ0, this favorable topology of field lines gets destroyed. For larger ϵ0 (i.e. for ϵ0=0.5 and

0.7), additional CSs appear which are located away from the y = π plane and the magnetic

nulls. Further analysis identifies the origin of these CSs to favorable contortions of co-located

magnetic flux surfaces.

Noteworthy are the insights gained on the relation between the intensity of interlacing

and the onset of CSs. We have demonstrated that a magnetic field with less interlacing

develop CSs at locations where such development is topologically favorable. Also these

CSs are localized at the immediate neighborhood of the favorable location. In contrast,

for more interlaced field lines the CSs develop away from magnetic nulls or any such topo-

logically favorable sites. Further, the CSs being distributed throughout the volume with

spatial extensions that increase with intensity of interlacing, their development supports the

magnetostatic theorem to its full generality. The onset of CSs are further found to be near

possible QSLs and related to their dynamics.

Altogether, the computations reported here and in [6, 9–11] substantiate and extend the

magnetostatic theorem by relating the intensity of MFL interlacing to the spatial distri-

bution of CSs and identifying MFS contortions as the rationale behind the onset of CSs

away from the favorable locations. The contortions are related to possible QSL structures

which, provides a basis to extend the EP based computations to the solar corona. Combined

with the scenario of secondary CS development which, in general, increases the topological

complexity; the findings of this paper point toward the ubiquity of CSs in a high RM mag-

netofluid. To relate this ubiquity to observation, it is crucial to include field line topologies

similar to the coronal loops along with physical MRs, and this warrants a separate study.
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FIG. 1: Panel a depicts initial Euler surfaces ψ1 = ±0.5 in grey and ϕ1 = −0.35 in red. Panel b

depicts initial Euler surfaces ψ2 = ±0.1 in grey and ϕ2 = 0.15 in red. The surface in green marks

the y = π plane.
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FIG. 2: The panels a, b, c and d illustrate magnetic field lines of the initial field H for

ϵ0 = 0.1, 0.3, 0.5 and 0.7 respectively. Notably, the field lines are becoming more interlaced as

ϵ0 increases.
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FIG. 3: Panels (a), (b), (c) and (d) show field lines of H for ϵ0 = 0.1, 0.3, 0.5 and 0.7 respectively.

These field lines are plotted in close proximity of the y = π plane and with z ∈ {0, π}. The figure

indicates the field lines to be helical for ϵ0 = 0.1, while for larger ϵ0, the field lines deviate from

this helical structure. Importantly, the distance between two anti-parallel field lines located across

the y = π plane increases with ϵ0.
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FIG. 4: The figure demonstrates the magnetic nulls by isosurfaces of χ(x, y, z), defined in (36),

with parameter H0 = 0.01 and d0 = 0.05, for ϵ0 = 0.5. The presence of 2D nulls and complete

absence of 3D nulls is evident from the figure. The field topologies near the neutral line located at

x = π/2, z = π is depicted in inset; which correspond to X-type nulls.
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FIG. 5: Time evolution of normalized kinetic and magnetic energies for ϵ0 = 0.1 (panels a and

b). The normalization is done with the initial total energy. The plots highlight the initial peak in

kinetic energy and the quasi-steady phase of the evolution.
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FIG. 6: Panels a, b, c, and d illustrate deviations of normalized kinetic (dashed) and magnetic

(solid) energy rates from their analytical values during computations with ϵ0 = 0.1, 0.3, 0.5, and

0.7 respectively. The normalization is with respect to the initial total energy. The plots document

an almost accurate maintenance of the energy rates.
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FIG. 7: Panels a and b show time evolution of normalized <| J |> and Jmax respectively for

ϵ0 = 0.1 (starred line), 0.3 (dotted line), 0.5 (dashed line), and 0.7 (solid line). The overall increase

in current densities with time suggests development of CSs.
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FIG. 8: Panels a, b, and c illustrate time evolution of <| J2 |>, < J1 · J2 >, and <| J1 |>

respectively for ϵ0 = 0.1 (starred line), 0.3 (dotted line), 0.5 (dashed line), and 0.7 (solid line). The

current densities are normalized to their initial values.
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FIG. 9: The plot of Jmax against grid resolution for ϵ0 = 0.1 (stars) and ϵ0 = 0.5 (dots). The

monotonous increase of Jmax with resolution confirms the development of CSs for both the ϵ0

values. Also, the plot documents a stronger scaling with resolution for the case ϵ0 = 0.1.
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FIG. 10: Evolution of the isosurface J − 50 (in blue), having an isovalue which is 50% of the

maximum | J | for ϵ0 = 0.1. The figure is further overlaid with magnetic nulls (in grey). Noteworthy

is the development of CSs at y = π plane where they are generally expected because of the presence

of favorable field line topology. The figure also shows the generation of closed elongated J − 50

surfaces.
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FIG. 11: History of two complementary sets of oppositely directed MFLs of the H along with

J − 50 surfaces (in blue) for ϵ0 = 0.1. The plots confirm development of CSs at the y = π plane as

two oppositely directed field lines approach each other. The figure also relates the closed J − 50

surfaces to an increase in parallel field lines density, implying their onset does not indicate CS

formation.
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FIG. 12: Time sequence of the isosurface J − 50 (in blue) overlaid with magnetic nulls (in grey),

for ϵ0 = 0.3. The plots illustrate the appearances of closed elongated current structures along with

CSs located at the y = π plane.
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FIG. 13: Evolution of the surface J − 50 (in blue) overlaid with magnetic nulls (in grey), for

ϵ0 = 0.5. Noteworthy is the development of CSs away from the nulls.
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FIG. 14: Appearance of J1−40 surfaces at t = 112s for ϵ0 = 0.5, plotted in the half computational

domain with z ∈ {0, π}. The J1 − 40 surfaces are comprised of helices extended along the y axis

and patches (marked by downward arrows) located at the y = π plane.

32



FIG. 15: Evolution of Euler surface ψ1 = −0.65 (in grey) overlaid with the J1 − 40 surface (in

blue), for ϵ0 = 0.5. For better visualization, the evolution is shown in the subdomain x ∈ {2π
3 ,

4π
3 }.

Noteworthy, the J1 − 40 surface is co-located with the contortion of ψ1 = −0.65 surface, inferring

the causality between them.
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FIG. 16: Time profile of Euler surfaces ϕ1 = −0.60 (in red) overlaid with the surface J1 − 40

(in blue) for ϵ0 = 0.5, plotted in a selected portion of the computational domain. The two Euler

surfaces depicted in the figure reside on two opposite sides of the y = π plane. The figure identifies

the development of current patches (marked by X) to favorable contortions of ϕ1.
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FIG. 17: Development of the surface J − 50 (in blue) overlaid with magnetic nulls (in grey), for

ϵ0 = 0.7. The figure substantiates onset of CSs which are away from magnetic nulls and the y = π

plane. Furthermore, these CSs are distributed through out the computation volume.
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FIG. 18: A snapshot of the J−50 surfaces at t = 112s, for ϵ0 = 0.7. The surfaces are plotted in the

half computational domain with z ∈ {0, π}. From the figure, evident are the helical CSs extending

along the y axis and the current patches (marked by upward arrows) tangential to y-constant

planes.
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FIG. 19: Appearances of J1−40 surface at t = 112s for ϵ0 = 0.7, depicted in the half computational

domain with z ∈ {0, π}. The J1 − 40 surfaces are elongated along the y axis.
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FIG. 20: Evolution of Euler surfaces ψ1 = −0.60 (in grey) overplotted with the surface J1 − 40

(in blue) for ϵ0 = 0.7, shown in the computational domain with x ∈ {2π
3 ,

4π
3 }. The figure indicates

contortions of ψ1-constant Euler surfaces to be responsible for onset of the helical J1− 40 surfaces.
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FIG. 21: Evolution of Euler surfaces ϕ2 = 0.05 (in red) overlaid with the surface J2 − 40 (in

blue) for ϵ0 = 0.7. The figure indicates, contortions of the ϕ2-constant surfaces are responsible for

developing the patches of J2 − 40 tangential to y-constant planes.
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FIG. 22: Two sets of MFLs (colored red and cyan) H overlaid with the J − 50 surfaces (in blue)

at t = 0s and t = 112s, for ϵ0 = 0.5. The bifurcation of the MFLs, with the red set connecting

the planes C and E and the cyan set connecting the planes C and D, documents a change in

field line connectivity. The appearances of CS (in blue) co-located to the layers across which the

MFLs bifurcate, suggest the presence of QSL structures in H. Additionally, the MFLs at t = 112s

(with the CS fully develop) are more helical compared to the MFLs at t = 0s (in absence of CS);

indicating a causal connection between the favorable contortions and the dynamics of QSLs.
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