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ABSTRACT

Parker’s magnetostatic theorem extended to astrophysical magnetofluids with

large magnetic Reynolds number supports ceaseless regeneration of current sheets

and hence, spontaneous magnetic reconnections recurring in time. Consequently,

a scenario is possible where the repeated reconnections provide an autonomous

mechanism governing emergence of coherent structures in astrophysical mag-

netofluids. In this work, such a scenario is explored by performing numerical

computations commensurate with the magnetostatic theorem. In particular, the

computations explore the evolution of a flux-rope governed by repeated recon-

nections in a magnetic geometry resembling bipolar loops of solar corona. The

revealed morphology of the evolution process including onset and ascent of the

rope, reconnection locations and the associated topology of the magnetic field

lines agrees with observations, and thus substantiates physical realisability of

the advocated mechanism.

Subject headings: magnetic reconnection – magnetohydrodynamics (MHD) – Sun:

corona – Sun: magnetic fields
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1. Introduction

The astrophysical plasmas in general, and the solar corona in particular, are described

by the non-diffusive limit of magnetohydrodynamics (MHD). The reason for such description

is the large length scales and high temperatures, inherent to such plasmas which make

the Lundquist number (S = vaL/η, in usual notations) extremely high. For example,

the Lundquist number for the solar corona, having a typical length scale L ≈ 107m and

magnetic diffusivity η ≈ 1m2s−1 (Aschwanden 2004), is in the orders of 1013. In such high-S

plasmas, the Alfvén’s theorem of flux-freezing (Priest 1982) is satisfied, thus predicting

magnetic field lines (MFLs) to remain tied with fluid parcels during an evolution. With

MFLs under coevolution with fluid parcels, a magnetic flux surface (MFS)—made by the

loci of MFLs—once identified with a fluid surface, will maintain the identity throughout the

evolution. As demonstrated by recent numerical simulations (Kumar et al. 2014, 2015b),

such coevolution spontaneously develop current sheets (CSs); i.e., two dimensional surfaces

of intense volume current density across which the MFLs flip sign. These simulations

attribute the appearance of CSs to favorable contortions of MFSs, generic to the high-S

magnetofluids dynamics. Noteworthy in the simulations is the development of a quasi

steady state, approximately concurrent with the growing CSs. This is expected as the

favorable contortions bring anti-parallel field lines in proximity and thereby increase local

magnetic pressure which in turn, opposes further contortions. In the ideal scenario of η = 0,

the quasi steady state corresponds to a steady state where magnetic field is discontinuous

across a CS.

The above findings are in conformity with Parker’s magnetostatic theorem (Parker

1972, 1988, 1994, 2012). The theorem states that the development of CSs is ubiquitous

in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic

topology. The development is due to a general failure of spatially continuous magnetic field
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in achieving local equilibrium while preserving its topology. Generalization of the theorem

to a magnetofluid undergoing topology-preserving evolution then naturally favors inevitable

onset of CSs when the fluid relaxes toward a steady state. Here, the inevitability is due

to unbalanced forces, which under flux-freezing have a constrained evolution that develop

sharp gradients in the magnetic field (Parker 1994).

In presence of an otherwise negligible magnetic diffusivity, the CSs provide sites where

the Lundquist number is locally reduced. The flux-freezing is destroyed and the locally

diffusive magnetofluid undergoes magnetic reconnections (MRs) where magnetic energy is

converted into energy of mass flow and heat. With reconnection, the CSs are dissipated,

and MFLs being tied to fluid parcels are expunged from the reconnection sites along with

the mass flow. These expunged field lines push onto other MFLs and, under favorable

conditions, may lead to further reconnections. Importantly, a single reconnection can

initiate consecutive secondary MRs, intermittent in space and time, which may shape up

the dynamics of high-S magnetofluids. In a recent computational study (Kumar et al.

2015a) a scenario was explored, where repeated reconnections were identified as a cause for

generating various magnetic structures, some duplicating magnetic antics of the Sun.

Toward realizing the above scenario in solar corona, we note that hard X-ray coronal

sources are standardly accepted as signatures of magnetic reconnection in solar flares

(Krucker et al. 2008). High resolution measurements show multiple peaks of non-thermal

nature in flare’s time profile, which suggest the corresponding energy releases and hence, the

underlying reconnections, to be episodic (Joshi et al. 2013). Recent observations at multiple

channels (hard X-ray and extreme ultraviolet) reveal intense localized brightening to occur

below an ascending flux-rope (Kushwaha et al. 2015). The spatio-temporal correlation

between intermittent energy release and ascent of an overlying flux-rope imply a causal

connection between magnetic reconnections and the ascent (Cho et al. 2009; Cheng et al.
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2011).

In the above perspective, this paper numerically demonstrates the evolution of a flux-

rope in terms of its creation from initial bipolar field lines and continuous ascent, mediated

via the common process of repeated spontaneous reconnections. The corresponding

manifestations of magnetic topology—in likes of MRs occurring at a height, reconnections

being localized below the rope and development of dips at the bottom part of the rope—are

in general harmony with observations. This contrasts with the contemporary simulations

of flux-ropes that judiciously precondition rope evolution—either by specifying preexisting

twisted magnetic structures that emerge from below the photosphere (Fan 2001; Fan &

Gibson 2003; Fan 2010, 2011; Chatterjee & Fan 2013; Fan 2016), or by forcing magnetic

reconnections inside a sheared arcade with select (shearing and/or converging) initial

flows (Ballegooijen & Martens 1989; Choe & Lee 1996; Amari et al. 1999, 2003; Aulanier

et al. 2010; Xia et al. 2014). While the present work also explores MRs inside sheared

arcades, the computations being in agreement with the magnetostatic theorem generate

spontaneous reconnections which provide an autonomous mechanism to govern dynamics of

any high-S magnetofluid. The novelty of this work is in its approach to establish creation

and activation of a physically realizable flux-rope as a consequence of the autonomous

mechanism. Introspectively, such a rope has the flavor of a self-organized state (Kusano et

al. 1994).

To make numerical simulations agree with the theory of CS formation, the requirement

is the satisfaction of flux-freezing to high fidelity between two successive MRs, while

enabling local diffusion of MFLs co-located and concurrent with the developing CSs. These

two requirements are achieved through the following numerical scheme. Viscous relaxation

(Bhattacharyya et al. 2010; Kumar et al. 2014, 2015a,b) of a thermally homogeneous,

incompressible magnetofluid with infinite electrical conductivity is employed to evolve
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the fluid under the flux-freezing till CSs develop. To focus on the idea, the relevant

Navier-Stokes MHD equations are

∂v

∂t
+ (v · ∇)v = −∇p + (∇×B)×B+

τa
τν
∇2v , (1)

∇ · v = 0 , (2)

∂B

∂t
= ∇× (v ×B) , (3)

∇ ·B = 0 , (4)

in usual notations. The equations (1)-(4) are written in dimensionless form, with all

variables normalized according to

B −→ B

B0

, (5)

v −→ v

va
, (6)

L −→ L

L0

, (7)

t −→ t

τa
, (8)

p −→ p

ρva2
. (9)

Here, the constants B0 and L0 are generally arbitrary, but can be fixed by the magnetic field

strength and size of the system. Furthermore, va ≡ B0/
√
4πρ0 is the Alfvén speed and ρ0 is

the constan mass density. The constants τa and τν have dimensions of time, and represent

Alfvén transit time (τa = L0/va) and viscous diffusion time scale (τν = L2
0
/ν) respectively,

with ν being the kinematic viscosity. The pressure p satisfies the elliptic partial differential

equation

∇2

(

p+
v2

2

)

= ∇ ·
[

(∇×B)×B− (∇× v)× v
]

(10)

generated by imposing the incompressibility (2) on the momentum transport equation (1);

see (Bhattacharyya et al. 2010) for discussion. If released from an initial non-equilibrium
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state, the above fluid evolves by converting magnetic energy into the energy of mass flow

while the latter gets dissipated by viscosity. The terminal state is then expected to be static

where the pressure gradient is balanced by the Lorentz force as MFLs cannot get diffused

because of the flux-freezing. In simulations however, only a quasi-steady state is achieved,

maintained by a partial balance of Lorentz force, pressure gradient and viscous drag; details

of the energetics can be found in (Bhattacharyya et al. 2010; Kumar et al. 2014, 2015a,b).

The CSs develop as the fluid relaxes to the terminal state.

As thickness of the developing CSs falls below the selected grid resolution, scales

become under-resolved and numerical artifacts such as spurious oscillations are generated

through employed numerical techniques. These under-resolved scales can be removed

by utilizing an apt numerical diffusivity of non-oscillatory finite volume differencing. In

literature, such calculations relying on the non-oscillatory numerical diffusivity are referred

as Implicit Large Eddy Simulations (ILESs) (Grinstein 2007). The computations performed

in this work are in the spirit of ILESs where simulated MRs, being intermittent in space

and time, mimic physical reconnections in high-S fluids.

The rest of the paper is organized as follows. In section II we construct the initial

magnetic field and discuss the numerical model. Section III is dedicated to results and

discussions. In section IV, we summarize results and highlight important findings.
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2. Initial magnetic field and numerical model

2.1. Initial magnetic field

To construct an initial magnetic field with field-line topology similar to coronal loops,

we choose B(r, t = 0) with the corresponding components

Bx = kz sin(kxx) exp

(

−kzz
s0

)

, (11)

By =
√

kx
2 − kz

2 sin(kxx) exp

(

−kzz
s0

)

, (12)

Bz = s0kx cos(kxx) exp

(

−kzz
s0

)

, (13)

defined in the positive half-space (z ≥ 0) of a Cartesian domain, assumed periodic in x.

The field is two dimensional as it only depends on x and z but not on y and hence, satisfy

translational symmetry along y. The merit of this choice is that for s0 = 1 B is reduced to

a gauge-invariant form of the linear force-free field

∇×Blf = α0Blf (14)

with the (constant) magnetic circulation per unit flux α0 =
√

kx
2 − kz

2 (Parker 2012), and

the associated Lorentz force (∇×B)×B := J×B ≡ 0. In the conducted simulation, the

translational symmetry is crucial for an identification of detached magnetic structure with

flux-rope. It helps to establish the reconnected field lines that generate a magnetic flux

surface, while providing fundamental understanding necessary to explore activation of a

three dimensional rope. Standardly, the solar corona is a low-β plasma with Lorenz force

dominating all other forces, and the zero Lorentz force corresponding to a viable equilibrium

(Priest 1982). With the initial B having congruent analytical form as Blf (Appendix A),

the field lines are expected to resemble coronal loops. The shear angle between x-axis and

the projection of an initial field line on the z = 0 plane,

φ = tan−1

(
√

kx
2 − kz

2

kz

)

, (15)
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is independent of s0. If kx = kz, φ = 0, and the field lines are tangential to y-constant

planes. Generally, the Lorentz force exerted by the field defined in (11)-(13) is

(J×B)x =

[

−kx(kx2 − kz
2) + kxs0

(

s0kx
2 − kz

2

s0

)]

sin2(kxx) exp

(

−2kzz

s0

)

, (16)

(J×B)y = 0 , (17)

(J×B)z =

[

kz
s0
(kx

2 − kz
2)− kz

(

s0kx
2 − kz

2

s0

)]

sin(2kxx)

2
exp

(

−2kzz

s0

)

. (18)

For all s0 6= 1, J × B 6= 0, so the Lorentz force contributes to the viscous relaxation.

To assure sheared field lines, we set kx = 1 and kz = 0.9 in the initial field (11)-(13).

Furthermore, we set s0 = 6, to optimize between computation cost and efficient development

of dynamics leading to formation of CSs and their subsequent reconnections. This selection

relied on the monotonous dependence of the maximal initial Lorentz force on s0, Figure 1,

and some auxiliary simulations (not reported here).

To aid further understanding, the following presents a detailed analysis of the initial

magnetic field. For relevant depictions, hereafter, we set x ∈ {0, π}, because similar

structures and dynamics are repeated in x ∈ {π, 2π} due to the assumed periodicity. The

MFLs for s0 = 6 are shown in Figure 2 (a).1 The arrows in colors red, green, and blue

denote the axes x, y, and z respectively. The plotted MFLs are sheared loops with a straight

polarity inversion line (PIL) located at (x, z) = (π/2, 0). To highlight the shear, Figure 2

(b) illustrates projection of the field lines on z = 0 plane which are inclined to the x-axis

at an angle φ ≡ tan−1(0.48) = 25.6◦. We keep φ fixed to this value for our simulations.

Notably, the MFLs maintain translational symmetry along y since B is independent of y.

For comparison, in panels a and b of Figure 3, we plot MFLs of the corresponding Blf (for

s0 = 1) and their projections on the z = 0 plane.

1The VAPOR visualization package (Clyne & Rast 2005) is used to integrate the field

lines equations.



– 10 –

Coronal arcades—associated with flux rope formation—are generally believed to evolve

from an initial quasi-equilibrium state, devoid of any major electric current density. An

appropriate physical mechanism is then required to generate dynamics from the quasi-

equilibrium. Such onset of dynamics can be achieved by a specialized photospheric flow

used in DeVore & Antiochos (2000), where fully compressive MHD simulations demonstrate

generation of ropes through reconnections. The present computations, however, start from

an initial non-equilibrium state with appreciable electric current density to make them

harmonious with general framework of the viscous relaxation. For instance, the initial

electric current density is roughly 15 times larger for the B in comparison to the Blf (cf.

Figs. 2 and 3).

2.2. Numerical model

To solve the Navier-Stokes MHD equations (1)-(4), we utilize the well established

magnetohydrodynamic numerical model EULAG-MHD (Smolarkiewicz & Charbonneau

2013), an extension of the hydrodynamic model EULAG predominantly used in atmospheric

and climate research (Smolarkiewicz 2006; Prusa et al. 2008). Here we summarize only

essential features of EULAG-MHD; the details are in Ref. (Smolarkiewicz & Charbonneau

2013) and references therein. The EULAG-MHD is based on the spatio-temporally second

order accurate non-oscillatory forward-in-time multidimensional positive definite advection

transport algorithm, MPDATA, (Smolarkiewicz 2006). Relevant to our simulations

is MPDATA proven dissipative property, intermittent and adaptive to generation of

under-resolved scales in field variables for a fixed grid resolution. With fixed grid resolution,

a development of CSs inevitably generates under-resolved scales as a consequence of

unbounded increase in the magnetic field gradient. The MPDATA then removes these

under-resolved scales by producing locally effective residual dissipation of the second order,
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sufficient to sustain monotonic nature of the solution. Being intermittent and adaptive,

the residual dissipation facilitate the model to perform ILESs that mimics the action

of explicit subgrid-scale turbulence models, whenever the concerned advective field is

under-resolved (Margolin et al. 2006). Such ILESs performed with the model have already

been successfully utilized to simulate regular solar cycles (Ghizaru et al. 2010), with the

rotational torsional oscillations subsequently characterized and analyzed in (Beaudoin et al.

2013). The simulations reported continue relying on the effectiveness of ILES in regularizing

the onset of MRs, concurrent and collocated with developing CSs (Kumar et al. 2013).

3. Simulation results

The simulations are performed on four differently sized grids—128 × 128 × 256,

64 × 64 × 128, 40 × 40 × 80 and 32 × 32 × 64—resolving the computational domain

0, 2π × 0, 2π × 0, 8π (respectively in x, y, and z), all starting from a motionless state and

initial field (11)-(13). The boundary conditions along x are periodic, and open in z. The y

direction is analytically ignorable, because the governing equations (1)-(4) and the initial

conditions assure all dependent variables invariant in y. However, for efficacy of the results

postprocessing and their analysis with the VAPOR visualization package (Clyne & Rast

2005) we allow field variables to have all the three components while circumventing discrete

differentiations in y. This makes field variables to have a translational symmetry along

y, the maintenance of which can easily be verified from relevant plots presented in the

paper. Moreover, for the case 32× 32 × 64 we have performed a fully 3D simulation, with

no ignorable coordinate, and found results (not shown) to be in exact agreement with the

corresponding 2.5D run.

In the conducted simulations, the dimensionless number τa/τν ≈ 10−5, and the

effective S−1 is negligibly small apart from reconnections. The residual dissipation being
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intermittent in time and space, a quantification of it is meaningful only in the spectral

space where, in analogy to the eddy-viscosity of explicit subgrid-scale models for turbulent

flows, it only acts on the shortest modes admissible on the grid (Domaradzki et al. 2003);

in particular, in the vicinity of steep gradients in simulated fields. For parameter values

relevant to solar corona (Aschwanden 2004), the ratio of Alfvén transit time to the viscous

time scale τa/τv ≈ 10−4, which is one order of magnitude larger than that adopted in our

computations. This, however, only affects the interval between two successive reconnections

without an effect on the corresponding change in field line topology. Being incompressible,

flow in our computations is volume preserving—an assumption also used in other works

(Dahlburg et al. 1991; Aulanier et al. 2005). While compressibility is important for the

thermodynamics of coronal loops (Ruderman & Roberts 2002), our focus is on elucidating

changes in magnetic topology idealised with a thermally homogeneous magnetofluid. We

select ρ0 = 1 to have τa ≈ 20s, roughly corresponding to the coronal value with constants

B0 and L0 set to 4 (amplitude of B) and 8π (vertical length of the physical domain)

respectively. The results for computation with resolutions 128 × 128 × 256 are presented

below.

To obtain overall understanding of the evolution, in Figure 4, we plot the time

profile of normalized kinetic energy. The time profile shows four distinct phases which

can approximately be divided into three overlapping intervals ranging from t ∈ {0s, 16s},

t ∈ {16s, 28s}, and t > 28s; separated by the vertical lines in the figure. The first phase

corresponds to a rise in kinetic energy as the initial Lorentz force pushes the magnetofluid

from rest. This rise is then arrested by viscous drag and the fluid settles down to a

quasi-steady state which is characterized by an almost constant kinetic energy, representing

the onset of the second phase. Also to be noted are the further rise and the following decay

of kinetic energy which correspond to the third phase.
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Figure 5 illustrates three sets of magnetic loops L1, L2, and L3, the evolution of

which leads to a topologically distinct structure with field lines detached from the z = 0

surface. This detached structure resembles a magnetic flux-rope propagating along the y.

For substantiation, in Figure 6 we plot the field lines in vicinity of the detached structure.

The plot establishes the detached structure to be a flux-rope, made by helical field lines

that are tangential to nested co-axial cylindrical surfaces. Away from the axis, the helices

are more tightly wound. Importantly, the Figure 5 documents a sustained ascent of the

flux-rope along the vertical while being always situated above the PIL. The latter is a

general requirement for magnetic structures to represent solar prominences or filaments.

Toward an explanation for generation of the rope, notable is the implosion of MFLs

with a simultaneous increase in their footpoint (the point at which MFLs intersect the z = 0

plane) separation as displayed in panel b of Figure 7. During the implosion, reconnection

of footpoints is prohibited because only parallel MFLs are bundled together. With

magnitude of the Lorentz force diminishing exponentially along the vertical, the implosion

is non-uniform, being more effective at lower heights. The non-uniform implosion generates

a void depleted of MFLs, leading to a local decrease in magnetic pressure on a y constant

plane; cf. panel b of Figure 7. Consequently, parts of two complementary anti-parallel field

lines, located on opposite sides of the PIL, are stretched along x and enter into this void

(panel c). As a result, the gradient of B along x sharpens up, as confirmed by the Figure

8 that documents scaling of current density with resolution in the vicinity of the void.

Consequently, magnetic reconnection takes place as the scales become under-resolved (panel

d of Fig. 7). Such reconnections, repeated in time, are responsible for the origin of the rope.

Crucial is the non-zero shear, or equivalently By 6= 0, which makes the reconnected field

lines helical. In absence of shear, MFLs would have been closed disjoint curves tangential

to y-constant planes—thus corresponding to a flux tube, but not a rope.
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The projection of the rope on a y-constant plane corresponds to a magnetic island. In

Figure 9 we plot evolution of the island at t = 6s and t = 8s. Important is the appearance of

an X-type magnetic null located below the island; illustrated in Figure 9 (a) by the symbol

X . The MRs at the X-type neutral point increase number of MFLs constituting the island

(panel b of Fig. 9). Also, the outflow generated by these repeated MRs at the X-point lifts

the island center along the vertical. Notably, the above MRs are occurring while preserving

the X-type null and no extended CS is developed, as documented by contours of current

density in the Figure 7. The development of an extended CS by squashing a X-type null

requires a favorable force missing in this period of evolution.

In Figure 10, we illustrate MFLs projected on a y-constant plane (panels a and b)

and contours of current density (panels c and d) at instances t = 16s and t = 21s, which

correspond to the second phase of the evolution. From the figure, as reconnections at the

X-type null continue, the magnetic pressure, below and above the two quadrants of the

X-type null (denoted by X1 and X2 in panel a of the figure), increases. The increased

magnetic pressure results in squashing of the X-type null and leads to formation of two

Y -type nulls along with an extended CS (panels b and d). Importantly, the development of

this extended CS is concurrent with the quasi-steady phase of the evolution t ∈ {16s, 28s},

as demanded by the magnetostatic theorem. The decay of this CS is responsible for the

post quasi-steady rise in kinetic energy, marking onset of the third phase.

The corresponding dynamics of MFLs in the third phase is documented in Figure 11

for time instances t = 30s, t = 40s, t = 50s, and t = 55s. Noticeably, the reconnection at

the extended CS reduces the pressure beneath the flux-rope because of a localized decrease

in magnetic field strength. The neighboring field lines are stretched into this pressure

depleted region, from all sides, rendering the rope to be dipped at the bottom portion.

This dip corresponds to the observed dipped portion of a prominence, where the mass of
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the prominence is believed to be situated (Ballegooijen & Cranmer 2010). Along with the

stretched field lines located below the pressure depleted region, the dipped portion of the

rope generates a new X-type null—denoted by X3 in the figure. Along with the rope, this

new X-type null also moves upward. Further evolved, the MFLs constituting the flux-rope

reconnect and the rope loses its well defined structure.

Noteworthy is importance of the translational symmetry in identifying the detached

magnetic structure with a flux-rope—which is first and foremost a magnetic flux surface by

its mathematical definition. Toward recognizing the importance, projection of a helical field

line constituting the detached structure (Figure 6) on a y-constant surface is a closed curve.

Because of the symmetry, a translation of this closed curve along y generates a surface on

which the helical field lines are also tangential; confirming the detached structure to be a

magnetic flux surface. In absence of the symmetry, the identification is not straightforward

as field lines are always postprocessed and the processing error contributes to the topology

of the obtained MFLs. Conventionally, however, the magnetostatic theorem applies to

three dimensional fields, which favors the actual evolution of solar magnetized plasma.

To consolidate the simulation results further, in the following we present two auxiliary

computations where the symmetry is removed. The three dimensional simulations are

performed on a grid of size 128× 128× 256, resolving the same computational domain as in

the symmetric case. The boundary conditions along x and y are periodic, and open in z.

For consistency, all other parameters are kept identical to the symmetric case.

3.1. Auxiliary simulation I

For the first simulation, the initial magnetic field B⋆ (Appendix B) is constructed

by superposing a three dimensional solenoidal field on the B expressed in equations

(10)-(12). Notable is the structural similarity of the two superposed fields that individually
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reduce to a linear force free field for s0 = 1. The evolution for this 3D simulation is

shown in Figures 12 and 13. Figure 12 displays the time series for two sets of field lines,

where panel a corresponds to the initial field B⋆. The PIL is curved, thus attesting to

the absence of translational symmetry along the y. The figure is overlaid with contours

of magnetic pressure drawn on a y-constant plane. Similar to evolution depicted in

Figure 7, repeated reconnections generate a detached magnetic structure which, based

on the 2.5D computation, can be identified to a flux-rope. The Figure 13 illustrates the

evolution with more densely plotted field lines where panel a corresponds to the initial

field B⋆ (corresponding animation is provided as supplementary material). The field lines

constituting the rope are marked in red, and with an ascent maintained by underlying

reconnections document an evolution with overall similarity to its 2.5D counterpart.

3.2. Auxiliary simulation II

For the second simulation, the initial field B⋆⋆ (Appendix C) is derived by superposing

the B⋆ with another solenoidal field B′

p where the B′

p reduces to potential field for s0 = 1.

In Figure 14 we illustrate the evolution of magnetic field lines (corresponding animation is

provided as supplementary material). Panel a depicts the initial field lines of B⋆⋆ having a

curved PIL. The figure confirms the formation of flux rope (marked in red) and its ascent

by repetitive reconnections similar to the first 3D simulation (Figure 13). The figure is

overplotted with contours of | B⋆⋆ | in y-constant plane and isosurfaces of corresponding

current density J⋆⋆ with isovalues 15% and 20% of maximum | J⋆⋆ |. Based on their

appearances, the isosurfaces can be classified into two distinct categories: the surfaces

appearing at the z-constant plane below the rope (marked by A in panel d) and the

elongated surfaces located at horizontal sides of the rope (marked by B in panel d). The

figure identifies generation of the elongated surfaces to an increase in the local number
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density of parallel field lines, resulting in an increase in | B⋆⋆ | and hence | J⋆⋆ | without

any sharpening of field gradient. Hence, these surfaces do not represent current sheets

(Kumar et al. 2015b). In contrast, the surfaces lying in z-constant plane originate without

a co-located enhancement in | B⋆⋆ |, suggesting the development of these surfaces by a

local increase in the field gradient. Thus, the appearances of these surfaces indicate the

formation of current sheets below the rope (Kumar et al. 2015b). Importantly, the current

sheet has a non-uniform intensity distribution along the rope, where patches of intense

currents are marked in black while low currents are marked in yellow; which agrees with the

general expectation. The same non-uniformity of developing CSs was also observed in the

Auxiliary simulation I (not shown) which further validates the general expectation.

With the ascending flux ropes having underlying reconnections in agreement with

the standard flare model (Shibata & Magara 2011), the reported simulations identify

spontaneous repeated MRs as the initial driver for the rope formation and triggering its

ascent. Further, the simulations underline that MRs play an active role in the feedback

mechanism between flux-rope dynamics and reconnections, central to the standard flare

model. This is in harmony with contemporary observations (Temmer et al. 2008, 2010; Cho

et al. 2009; Cheng et al. 2011).

4. Summary and conclusions

The presented simulations start from a select motionless state with magnetic field

congruent to a gauge-invariant form of linear force-free field having translational symmetry.

These simulations identify repeated magnetic reconnections as an autonomous mechanism

for creating a flux-rope from initially bipolar field lines and, subsequently, for triggering

and maintaining its ascent via reconnections that occur below the rope. The computations

being commensurate with the requirements of magnetostatic theorem, the reconnections
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are spontaneous and inherent to the evolving fluid. The computational commensuration

with the Parker’s theorem is achieved by viscous relaxation of an incompressible, thermally

homogeneous high-S magnetofluid maintaining the condition of flux-freezing. During

the relaxation, sharpening of magnetic field gradient is unbounded, ultimately leading to

MRs at locations where separation of non-parallel field lines approaches grid resolution.

The MR process per se is underresolved, but effectively regularized by locally adaptive

dissipation of MPDATA, in the spirit of ILES subgrid-scale turbulence models. In effect,

the post-reconnection condition of flux-freezing is restored, and field lines tied to the

reconnection outflow push other sets of MFLs, leading to secondary MRs. The whole

process is replicated in time to realize repetitive reconnections.

The simulated relaxation process comprises three distinct phases. In the first phase, a

combination of incompressibility and the initial Lorentz force deforms initial field lines such

that the field gradient sharpens in a direction implied by the initial condition (herein x).

Further push eventuates in reconnection and development of a X-type neutral point along

with a detached flux-rope. Repeated reconnections around the X-type null generate more

detached field lines which contribute to the rope. Moreover, being frozen to the outflow, the

rope ascends vertically. Because the reconnections are localized below the evolving rope,

the scenario is in general agreement with observations. As the magnetofluid relaxes to a

quasi-steady state, the process enters the second phase of the relaxation with the X-type

null being squashed to generate two Y -type nulls along with an extended CS beneath the

rope. In the third phase the extended CS decay, resulting in an increase in the kinetic

energy of mass flow. Because of the corresponding decrease in magnetic intensity near the

decaying CS, MFLs from all side of the CS are stretched into the field depleted region. The

rope becomes dipped at the bottom and a new X-type null is generated which ascends

with the rope. Continued further in time, the flux-rope reconnects internally and loses its

structure. Fully three dimensional simulations are also performed to verify the robustness
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of repeated spontaneous MRs in creation and ascent of a rope accordant to a more realistic

evolution. Importantly, the three dimensional simulations document the intensity of CSs

developed over respective PILs to be non-uniform—a feature expected in realistic ropes

developed via reconnections.

Altogether the computations extend Parker’s magnetostatic theorem to the scenario of

evolving magnetic fields which can undergo magnetic reconnection. Notably, the theorem

in absence of magnetic diffusivity leads to CSs, having true mathematical singularities in

magnetic field which are end states of any evolution. But in presence of small but non-zero

magnetic diffusivity, as in astrophysical plasmas, the theorem opens up the possibility of

spontaneous generation of secondary CSs and subsequent MRs that may contribute to the

dynamics of the plasma. The computations confirm the contribution to be meaningful as

it can generate observed magnetic structures and govern their dynamics which, in this

case, is the evolution of a flux-rope in terms of its generation and ascent in a magnetic

topology relevant to the solar corona. Additionally, in context of the standard flare model,

the simulations imply a direct involvement of magnetic reconnection in the activation of

flux-ropes.
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A. Appendix

To solve a linear force-free equation, the magnetic field is identified as a Chandrasekhar-

Kendall (Chandrasekhar & Kendall 1957) eigenfunction which, in Cartesian coordinate can

be written as

Y = ∇× ψêy +
1

α0

∇× (∇× ψêy) , (A1)

where ψ = ψ(x, y, z) is a scalar function and α0 is constant. Substitution of Y in the linear

force-free equation gives,

∇× (∇×∇× ψêy − α0
2ψêy) = 0 , (A2)

implying,

(∇×∇× ψêy − α0
2ψêy) = ∇λ , (A3)

where the scalar function λ = λ(x, y, z) represents an arbitrary gauge. Using the identity

∇×∇× ψêy = −∇2ψêy +∇(∇ · ψêy) , (A4)

results in the inhomogeneous vector Helmholtz equation for the magnetic field

(∇2ψ + α0
2ψ)êy = ∇(∇ · ψêy − λ) . (A5)

Standardly, a three dimensional analytical solution of the linear force-free equation is

obtained by only solving the homogeneous equation which corresponds to the selection of

λ = ∇ · ψêy , (A6)

for the gauge. If ∂/∂y ≡ 0, the solution for the linear force-free equation is gauge

independent, and the scalar function ψ satisfies Helmholtz equation

∇2ψ + α2

0
ψ = 0 . (A7)
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Consequently, for a geometry relevant to solar corona, the field components are

Blfx = kz sin(kxx) exp (−kzz) , (A8)

Blfy =
√

kx
2 − kz

2 sin(kxx) exp (−kzz) , (A9)

Blfz = kx cos(kxx) exp (−kzz) , (A10)

with α0 =
√

kx
2 − kz

2.

B. Appendix

A three dimensional linear force-free field B′

lf , with the choice of gauge, has components

B′

lf x
= α0ly sin(lxx) cos(lyy) exp (−lzz)− lxlz cos(lxx) sin(lyy) exp (−lzz) , (B1)

B′

lf y
= −α0lx cos(lxx) sin(lyy) exp (−lzz)− lylz sin(lxx) cos(lyy) exp (−lzz) , (B2)

B′

lf z
= (lx

2 + ly
2) sin(lxx) sin(lyy) exp (−lzz) , (B3)

with α0 =
√

lx
2 + ly

2 − lz
2. The three dimensional simulation is performed with an initial

field

B⋆ = B+ a0B
′ (B4)

for a0 = .5 and B′ having components

B′

x = sin(x) cos(y) exp

(

− z

s0

)

− cos(x) sin(y) exp

(

− z

s0

)

, (B5)

B′

y = − cos(x) sin(y) exp

(

− z

s0

)

− sin(x) cos(y) exp

(

− z

s0

)

, (B6)

B′

z = 2s0 sin(x) sin(y) exp

(

− z

s0

)

. (B7)
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C. Appendix

The force-free field Blf (Appendix A) reduces to a two-dimensional potential field Bp

with kx = kz = k. Then, the components of the Bp are

Bpx
= k sin(kx) exp (−kz) , (C1)

Bpy
= 0, (C2)

Bpz
= k cos(kx) exp (−kz) , (C3)

with α0 = 0. The additional three dimensional simulation is conducted with the initial field

B⋆⋆ = B⋆ +B′

p (C4)

where B′

p (derived from the Bp) has the components

Bp
′

x
= sin(x) exp

(

− z

s0

)

, (C5)

Bp
′

y
= 0, (C6)

Bp
′

z
= s0 cos(x) exp

(

− z

s0

)

. (C7)
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Fig. 1.— Variation of | J × B |max with an increase in s0. The plots show a monotonous

increase in Lorentz force with an increase in s0.
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Fig. 2.— The panel a and b illustrate magnetic field lines of the initial field B for s0 = 6

and their projections of the z = 0 plane respectively. The projected field lines are inclined

to the x-axis with an angle φ, manifesting the sheared nature of MFLs. Both panels are

overlaid with contours of the z-component of B (Bz) on the z = 0 plane along with straight

PIL (in color black), indicating polarities of footpoints. Additionally, in panel a, contours of

magnitude of current density (| J |) are plotted on a y-constant plane to depict the current

density inside the sheared arcades.
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Fig. 3.— As in Fig. 2 but for field lines of Blf and their projections on the z = 0 plane.

The figure demonstrates the morphology and shear of the initial field B to be identical to

the corresponding Blf characterized by s0 = 1.
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Fig. 4.— The evolution of kinetic energy, normalized to initial total (kinetic+magnetic)

energy. Noteworthy are the three distinct phases of the evolution, marked by vertical lines

in the plot.
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Fig. 5.— Time sequences of magnetic field lines in their important phases of evolution.

Three different sets of magnetic loops are sketched, denoted by L1, L2 and L3 in panel a

of the figure. Important is formation of detached magnetic structure resembling a magnetic

flux-rope. Also evident is the ascend of this structure while being situated over the PIL.
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Fig. 6.— Snapshot of field lines at t = 10s, plotted in the neighborhood of the detached

structure. The figure verifies the detached magnetic structure to be comprised of a stack of

co-axial cylindrical magnetic flux surfaces which are made of helical field lines.
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Fig. 7.— Evolution of magnetic field lines concurrent with the first phase. The figure is

overlaid with contours of magnetic pressure (marked by C1 in panel a) and magnitude of

current density (marked by C2 in panel a) drawn on different y-constant planes. The PIL

is the solid black line. Panel b documents the implosion of MFLs situated at lower height

along with an increase in their footpoint separation which results in depletion of magnetic

pressure (symbolized by R) in the y-constant plane. Parts of MFLs are dragged into this

pressure depleted region R from both sides of PIL, which sharpens up the gradient in B

(panel c). Subsequent reconnection leads to the generation of detached helical field lines

(panel d). The current contours confirm the absence of an extended CS.
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Fig. 8.— The plot of current density (in vicinity of R as marked in panel b of Fig. 7) against

grid resolution. The abscissa is grid resolution along z whereas the ordinate is current

density. The monotonous increase of current density with resolution asserts the increase of

gradient in magnetic field.
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Fig. 9.— Time sequence of field lines at instances t = 6s and t = 8s, projected on a y-

constant plane. Panel a documents the presence of a magnetic island, reminiscent of the

rope, along with a X-type null (marked by the symbol X) below the island. The panel b

shows the number of field lines constituting the island increases while the center rises along

the vertical.
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Fig. 10.— Evolution of field lines (projected on a y-constant plane) coincides with quasi-

steady state of the relaxation (panels a and b). In addition, the contours of magnitude

of current density the y-constant plane are plotted in panels c and d. Noteworthy are the

pressing of two quadrants (shown by symbols X1 and X2 in panel a) and generation of

two Y-type nulls (denoted by symbols Y1 and Y2 in panel b) along with an extended CS

(depicted in color pink in panel b). The development of extended CS is also attested by the

current contours in panel d.
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Fig. 11.— The figure plots field lines during the third phase of evolution. The field lines are

projected on a y-constant plane. Important is the onset of a new X-type null (illustrated by

X3) while the bottom portion of the rope develops a dip (panel c). Also, the newly formed

X-point moves upward along with the rope (panel d).
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Fig. 12.— Time sequences of two sets of field lines for the three dimensional simulation

with initial field B⋆. The panel a shows the field lines of the initial field. Important to

note is the curved PIL (the solid black line). The figure is further overlaid with contours of

magnetic pressure (denoted by C1 in panel a) and current density (denoted by C2 in panel

a) plotted on different y-constant planes. Panels b, c and d document the development of

magnetic pressure depleted region (symbolized by P) in the y-constant plane and subsequent

reconnection which leads to the generation of a flux-rope. Also, the flux-rope is situated

above the PIL. Moreover, the current contours depict that no extended CS originates during

this phase of the evolution.
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Fig. 13.— Time sequences of evolution with more densely plotted field lines of the B⋆. The

lines in red marks the flux-rope. The overall evolution is similar to the 2.5D case. Noticeable

is the ascend of the rope. The animated evolution is presented as supplementary material.
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Fig. 14.— Evolution of field lines for the three dimensional simulation with initial field

B⋆⋆, illustrated in panel a (the curved PIL is shown by the solid blue line). The figure is

further overlaid with isosurfaces of current density with isovalues 15% (in color yellow) and

20% (in color black) of its maximum and contours of | B⋆⋆ | on a y-constant plane. The

helical red field lines identify the flux-rope which rises in the vertical direction. Notable is

the development of current sheet below the rope (marked by A in panel d). The elongated

surfaces (marked by B in panel d) being co-located with enhanced | B⋆⋆ | region in y-constant

plane imply that their onset does not indicate CS formation. The animated evolution is

presented as supplementary material.


