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Abstract

In ideal magnetohydrodynamics characterized by an infinite electrical conductivity, the magnetic

flux across an arbitrary fluid surface is conserved in time. The magnetofluid then can be partitioned

into contiguous subvolumes of fluid, each of which entraps its own subsystem of magnetic flux.

During dynamical evolution of the magnetofluid these subvolumes press into each other, and in

the process two such subvolumes may come into direct contact while ejecting a third interstitial

subvolume. Depending on the orientations of magnetic fields of the two interacting subvolumes

the magnetic field at the common surface of interaction may become discontinuous and a current

sheet is formed there. This process of current sheet formation and their subsequent decay is

believed to be a plausible mechanism for coronal heating and may also be responsible for various

eruptive phenomena at the solar corona. In this work, we explore this theoretical concept through

numerical simulations of a viscous, incompressible magnetofluid characterized by infinite electrical

conductivity. In particular, we show that if the initial magnetic field is prescribed by superposition

of two linear force-free fields with different torsion coefficients, then formation of current sheets are

numerically realizable in the neighborhood of magnetic nulls.

PACS numbers: 52.25.Xz, 52.30.Cv, 52.35.Vd, 95.30.Qd
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I. INTRODUCTION

An ideal magnetofluid characterized by infinite electrical conductivity evolves with mag-

netic field lines being tied to fluid parcels— referred as the frozen-in condition or flux freez-

ing. As a consequence, the magnetic flux across an arbitrary fluid surface [1], physically

identified by the material elements lying on it, remains conserved in time. However, ob-

served magnetofluids are not ideal but have a small but non-zero electrical diffusivity η.

The two limits, diffusive or ideal, of the single-fluid magnetohydrodymaics (MHD) is then

determined by the magnetic Reynolds number RM = V L/η in usual notations representing

the ratio of nonlinearity to dissipation. The astrophysical magnetofluids satisfies the condi-

tion RM >> 1 globally and hence can be considered as near-ideal systems for all practical

purposes. For example, the solar corona with its million degree Kelvin temperature and

10-15 Gauss ambient magnetic field has a Spitzer diffusivity of ≈ 1 m2s−1 [2]. Then for a

typical length scale L ≈ 107m, and characteristic speed V ≈ 103ms−1, RM ≈ 1010 which

qualifies the solar corona to be a near-ideal magnetofluid where the frozen-in condition is

satisfied to a good approximation.

Because of this frozen-in condition, in near-ideal systems a magnetic flux surface every-

where tangential to the magnetic field B, once identified as a fluid surface will maintain this

identity throughout subsequent evolution of the fluid. This equivalence in fluid and flux

surfaces enables to partition the magnetofluid into contiguous magnetic subvolumes each

entrapping its own magnetic flux system [3]. If two such magnetic subvolumes press into

each other and come into direct contact by squeezing out a third interstitial subvolume, then

under favorable conditions the magnetic field is expected to get discontinuous across their

common surface of interaction [1]. For such a discontinuous magnetic field the Ampere’s

law gives a current density J = (c/4π)∇× B, contained entirely in the plane across which

the magnetic field is discontinuous and hence forms a current sheet (CS).

The above possibility of CS formation through pressing of magnetic subvolumes is im-

minent from the optical analogy of magnetic field lines proposed by Parker [4–7]. Although

more general in approach, the analogy in relation to an equilibrium magnetic field is based

on the similarity in field line equations of a potential field Bp = −∇φ on the corresponding

flux surface S, with the optical ray paths in a medium with refractive index | ∇φ |. The

magnetic field lines on different S surfaces then stream according to Fermat’s principle and
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get refracted like optical rays. Further analysis shows this refraction to deflect a field line

concavely towards the local maximum in | Bp |. The trajectory of a stream of field lines

laying on a given S surface then locally exclude a region of sufficient maximum in | Bp |,

resulting in a gap on the flux surface. This gap extends to a hole in a stack of such flux

surfaces. In a dynamical scenario, a local compression of two magnetic subvolumes on either

sides of this stack then enables corresponding magnetic field lines to intrude through the

hole and come into direct contact. These intruding field lines being in general not parallel,

a formation of CS is inevitable at the contact.

Albeit stated here in terms of a potential field which is trivially untwisted, the optical

analogy is also applicable for a twisted magnetic field [7]. For completeness, here we provide

a rationale in favor of this applicability by noting that a twisted magnetic field can be

expressed as a superposition of component fields where each component is untwisted [8].

For every component field, magnetic flux surfaces can be constructed by a pair of Euler

potentials (EPs) (ξi, ζj) [9, 10]. The magnetic field is then

B =
∑

j

Bj =
∑

j

Wj(ξj, ζj)∇ξj ×∇ζj , (1)

where the index j specifies a component field with magnitude Wj. Both ξj-constant and

ζj-constant surfaces are then magnetic flux surfaces of the component Bj. The magnetic

field lines being the lines of intersection of the two surfaces, the magnetic topology is then

essentially determined by the EPs. The vector field

A′

j =
Bj

W (ξj, ζj)
= ∇ξj ×∇ζj , (2)

is then topologically identical to Bj. The optical analogy is then applicable to the potential

field defined as

Aj =
A′′

j

ξj
= ∇ζj , (3)

where the vector A′′

j = ∇× A′

j . Noting that a gap in the field lines on a flux surface is a

gap on the flux surface itself, holes will be created in stacks of ξj-constant and ζj-constant

surfaces also. The optical analogy is then applicable to each of the component fields with

their locally defined flux surfaces. Further the superposition being linear, a formation of CS

on any one of the local flux surfaces will result in enhancing the total current density.
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In the ideal limit of zero resistivity, the field lines are prohibited to diffuse from one

subvolume to the other and the discontinuity in B achieves its true mathematically singular

limit. In a near-ideal magnetofluid however, as the gradient in B sharpens a threshold is

reached where the magnetic Reynolds number becomes locally small because of the decrease

in L, the scale over which the magnetic field varies. As a consequence the magnetofluid

becomes locally diffusive resulting in magnetic reconnection [11] through which magnetic

energy gets converted into heat and kinetic energy. This fundamental heating mechanism is

believed to be one of the possible causes to maintain the solar corona at its million degree

Kelvin temperature [7].

The analytical demonstration of spontaneous CS formation in a static magnetofluid with

infinite electrical conductivity was first proposed by Parker [12, 13] and is recently revis-

ited in reference [14]. The demonstration essentially utilizes the impossibility of satisfying

the two stringent conditions of ideal MHD, the local force balance and the conservation

of global magnetic topology as a consequence of flux freezing, with an interlaced magnetic

field continuous everywhere. The impossibility in simultaneous satisfaction of the above two

constraints of ideal MHD can further be explained in terms of the overdetermined nature

of magnetostatic partial differential equations nonlinearly coupled to the integral equations

imposing the field topology, and the hyperbolic nature of the torsion coefficient α0 of a

force-free equilibrium characterized by zero Lorentz force [15]. It is further demonstrated

by Low [16] that the magnetic topologies of the force-free fields obtainable from an uniform

magnetic field through continuous deformation by magnetic footpoint displacements at the

end plates of Parker’s magnetostatic theorem are a restricted subset of the field topologies

similarly created without imposing the force-free condition. The theorem then follows by

concluding that a continuous nonequilibrium field with a topology not in this subset must

relax to a terminal state containing magnetic discontinuities. To focus on ideas, we consider

an incompressible, thermally homogeneous, viscous magnetofluid with infinite electrical con-

ductivity bounded in a triply periodic Cartesian domain. The dynamics of the fluid is then

governed by the relevant MHD Navier-Stokes equations

ρ0

(

∂v

∂t
+ (v · ∇)v

)

= µ0∇
2v +

1

4π
(∇×B) × B−∇p, (4)

∇ · v = 0, (5)
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∂B

∂t
= ∇× (v ×B), (6)

∇ · B = 0, (7)

in standard notations, where ρ0 and µ0 are uniform density and coefficient of viscosity

respectively. Equation (7) is redundant in the sense that it is implied for all time by the

induction equation (6) if an initial field is chosen to be solenoidal. If released from an initial

nonequilibrium state, the magnetofluid would relax towards a terminal state by converting

magnetic energy WM to kinetic energy WK through equations

dWK

dt
=
∫

1

4π
[(∇×B) × B] · v d3x−

∫

µ0 |∇ × v|2 d3x , (8)

dWM

dt
= −

∫

1

4π
[(∇× B) ×B] · v d3x , (9)

dWT

dt
= −

∫

µ0 |∇ × v|2 d3x , (10)

where the integral is over a full period. The irreversible loss of energy as heat from the system

is via viscous dissipation since the Lorentz force is conservative. The terminal relaxed state

then has zero velocity and is in magnetostatic equilibrium since the magnetic field cannot

decay to zero because of flux freezing. In absence of magnetic diffusivity the magnetic

topology of the terminal state is the same as of the initial state. For an initially complex

magnetic topology, formation of CSs are then expected as the magnetofluid relaxes to the

terminal state— paving a way to understand the dynamics of CS formation through a viscous

relaxation. The terminal equilibrium being also a minimum energy state, any resistive

diffusion of the developed CSs in a near-ideal magnetofluid would be opposed by the Maxwell

stresses. The combined effect is then a general restriction of the thickness of CSs to a value

of ǫ < L/N1/2 where N = (LVA)/η is the Lundquist number and VA is the Alfven speed [7].

In light of the above discussion, a point to be emphasized is the possible importance of an

unbalanced force (Lorentz force + pressure gradient) counterbalancing the viscous drag in a

magnetofluid with infinite electrical conductivity. Such systems can be realized depending on

the length and time scales of the physical processes involved. For instance, in solar corona

the fluid Reynolds number is only RF ≈ 10 [2] in comparison to the magnetic Reynolds

number of RM ≈ 1010. Then the corona can be interpreted as an infinitely conducting but

viscous magnetofluid at appropriate intermediate scales lying between the large scales where
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nonlinearity dominates and the small scales where magnetic diffusivity is effective. Noting

that the frozen-in condition defines a fluid surface to be a valid magnetic flux surface,

if two such flux surfaces are pressed into each other then the velocity gradient and the

corresponding viscous drag also increases along with the current density. Because of the

lower value of fluid Reynolds number, the time scale for viscous diffusion is smaller than the

same for magnetic diffusion and the corresponding viscous drag may prevent two magnetic

subvolumes from coming into direct contact with each other resulting in prohibition of

CS formation. Then a CS is expected to form only in presence of a suitable force that

overcomes this viscous drag, which facilitates in bringing the two magnetic subvolumes into

direct contact of each other. A proof of concept for the above understanding of CS formation

through progressive pressing of magnetic subvolumes has already been demonstrated in a

recent numerical experiment [1] where the initial magnetic field is represented in terms of

a pair of global magnetic flux surfaces. The intersection curves of these two flux surfaces

then represent magnetic field lines. The advantage of the above work is in its advection

of magnetic flux surfaces instead of magnetic field, leading to simpler equations along with

elimination of possible post processing errors in determining magnetic topology. In addition,

the flux surface representation opens up the possibility to analyze results in terms of the

optical analogy. An apt trade-off for this advantage is the assumption of the initial magnetic

field to be untwisted, since only for such fields global magnetic flux surfaces exist whereas;

observations suggest most of the magnetic field relevant to astrophysical plasmas, including

the solar corona, to be twisted. A manifestation of this twisted magnetic field lines are

sigmoidal structures observed on the photosphere, as explained briefly in reference [3]. In

this work, our motivation is to numerically demonstrate CS formation with an initial twisted

magnetic field in relevance to general magnetic morphology of the solar corona.

A representation of twisted magnetic field in terms of EPs is difficult since there is no

unique way to determine the required number of untwisted components, the number being

essentially determined by the mathematical advantage of a given representation [1]. Addi-

tionally, choice of a pair of EPs for a given component field is not unique either [9, 10]. A

successful numerical simulation for understanding CS formation then requires a judicious

breakup of B in component fields along with selection of EPs that are advantageous for the

understanding. Finally the complex dynamics of each local flux surfaces are to be related

to the evolution of the total magnetic field and current density to arrive at the complete
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picture. In addition, an increase in general complexity of twisted fields may require large

number of component fields that increases computational cost manifold. To circumvent these

difficulties, here we adapt the more conventional approach of advecting the total magnetic

field instead of the local flux surfaces. Nonetheless, a comparison with optical analogy is

still possible in our computations, for example the squashing of an X-type neutral point to

two Y-type neutral points described latter in the paper.

In a tenuous magnetofluid like the solar corona, the plasma-β ratio of kinetic to magnetic

pressure being very small, the only available force to counterbalance the viscous drag is the

Lorentz force. Based on this general understanding, in a recent work by Ravindra et. al

[17] it is demonstrated that if a newly emerged magnetic flux described by a linear force-

free equation enters into a region already preoccupied by a different linear force-free field

at the coronal height, then the superposed state has a nonzero Lorentz force. It is further

conjectured that this unbalanced Lorentz force may be responsible to generate CSs through

progressive pressing of magnetic subvolumes. The subsequent magnetic reconnection is

then responsible for the observed solar flares. Motivated by the above proposal, here we

numerically demonstrate the feasibility of CS formation using an idealized scenario of Direct

Numerical Simulation (DNS) in a triply periodic Cartesian domain. The initial magnetic

field is assumed to be a superposition of two linear force-free fields which are in general

agreement with the twisted coronal magnetic fields, and also mimics a possible scenario of

flux emergence as envisioned in reference [17]. In addition, such a superposed magnetic field

can also be perceived as a spontaneously achieved two-fluid relaxed state [3].

The paper is organized as follows. The IVPs and the numerical model are discussed in

sections II and III respectively while simulation results are presented in section IV. Section

V summarizes these results and comments on possible future works.

II. INITIAL VALUE PROBLEM

In this section we develop the initial value problem in terms of two superposed linear

force-free fields. The mathematics is fundamentally the same as outlined in the appendix of

[17], presented here with more details for completeness. Let B1 and B2 are two linear force

free fields satisfying
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∇×B1 = α1B1 , (11)

∇×B2 = α2B2 (12)

with torsion coefficients α1 and α2 representing the magnetic circulations per unit flux

for B1 and B2 [14] respectively. A overlapped magnetic field is then created by a linear

superposition of B1 and B2, written as

B′ = B1 + γB2 , (13)

where γ is a constant weighing factor related to the amplitudes of the two superposed fields

and represents the deviation of B′ from its force-free configuration. The field lines for B′

are also twisted, as can easily be verified by noting J · B′ 6= 0 except for the trivial case of

| B1 |=| B2 |= 0.

The Lorentz force exerted by B′ is then given by

J × B′ =
1

µ
γ(α1 − α2)B1 ×B2 . (14)

For a triply periodic domain in Cartesian geometry, the components of B′ are

B′

x = k1k2 cos(k1x) cos(k2y) sin(k3z) − α1k3 sin(k1x)

sin(k2y)cos(k3z) + γ[l1l2 cos(l1x) cos(l2y) sin(l3z)

−α2l3 sin(l1x)sin(l2y)cos(l3z)], (15)

B′

y = (k2

1 + k2

3) sin(k1x) sin(k2y) sin(k3z) + γ[(l21 + l23)

sin(l1x) sin(l2y) sin(l3z)], (16)

B′

z = k2k3 sin(k1x) cos(k2y) cos(k3z) + α1k1 cos(k1x)

sin(k2y) sin(k3z) + γ[l2l3 sin(l1x) cos(l2y) cos(l3z)

+α2l1 cos(l1x) sin(l2y) sin(l3z)], (17)

with α1 =
√

k2
1 + k2

2 + k2
3 and α2 =

√

l21 + l22 + l23; the triplets k = {k1, k2, k3} and l =

{l1, l2, l3} representing different modes. From equation (14) then for conditions k = l or

γ = 0, B′ is force-free. We consider B′(x, y, z) = H(x, y, z), characterized by k = {1, 1, 1},

l = {2, 2, 2} and γ = 0.5, as the initial magnetic field in our simulations.
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In the following we describe the magnetic topology of H in terms of magnetic nulls and

separators [18], since CSs are expected to form at the neighborhood of these structures [19].

Also it is to be noted that CS formation in three dimensions can also occur in absence of

nulls [20]. Figure 1(a) illustrates all possible nulls of H in the computational domain of

volume (2π)3. The illustrations of magnetic nulls in this paper use the condition B = 0 at

the null points. For the purpose, we define a Gaussian function

ψ(x, y, z) = exp



−
∑

i=x,y,z

(Hi(x, y, z) −H0)
2

d0



 . (18)

where d0 determines width of the Gaussian and H0 represents a particular isovalue of

Hx, Hy, and Hz. By choosing H0 ≈ 0 and a small d0, the function ψ(x, y, z) 6= 0 only if

Hi ≈ H0 for each i. The three dimensional (3D) nulls are then the points where the three

isosurfaces Hx = H0, Hy = H0, Hz = H0 intersect. It should be noted that at the immediate

vicinity of a 3D null all the three components of magnetic field is nonzero. Similarly, a two

dimensional (2D) null in a 3D coordinate space can be described as a line of intersection

between H0 isosurfaces of two nonzero magnetic field components while the third component

is trivially zero at this line. Using the above technique, in Figure 1(a) we have depicted

both 3D and 2D nulls of H for parameters H0 = 0.01 and d0 = 0.05.

In Figure 1(b), we have plotted magnetic field lines about a pair of 3D nulls along with

their spine axes and overlapping fan structures. From equations (15), it can easily be seen

that Hx = Hy = Hz = 0 at x = z = π rendering the corresponding y = 0 to 2π line,

hereafter referred as y-line, to be a neutral line. Further insight can be gained by expanding

the field components in a Taylor series in the immediate neighborhood of x = π, z = π for

a constant y. Retaining only the first order terms, equations (15) reduce to

Hx = −(x− π)[α1k
2 sin(ky0) + γα2l

2 sin(ly0)] + (z − π)[k3 cos(ky0) + γl3 cos(ly0)],

Hy = 0, (19)

Hz = (x− π)[k3 cos(ky0) + γl3 cos(ly0)] + (z − π)[α1k
2 sin(ky0) + γα2l

2 sin(ly0)].

The components Hx and Hz given by equations (19) have point antisymmetry about coor-

dinates x = z = π along the y-line rendering every point on it to be a X-type neutral point.

It is also to be noted that only points y = 0, π, 2π are rotationally symmetric about the y
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line which can easily be verified by interchanging x and z. Figure 1(c) shows the magnetic

configuration of one such X-type neutral point located at y = π. In addition to these 3D and

2D nulls, a set of 2D X-type neutral points in the form of shoe-shaped structures are present

in H as shown in Figure 1(a). These shoe-shaped nulls originate because of the superposition

as can be verified by comparing Figure 1(a) with Figures 2(a) and 2(b) showing complete

absence of such nulls in B1 and B2 drawn separately for k = {1, 1, 1} and l = {2, 2, 2}. It is

to be noted that the individual torsion coefficients defined by mode numbers k and l fixes

the angle between the two superposing fields and also play a possible role in determining

the complexity of H by increasing the number of magnetic nulls.

III. NUMERICAL MODEL

A successful numerical demonstration of CS formation requires preservation of flux-

freezing to an accuracy such that the identity of a fluid surface as a magnetic flux is main-

tained to a reasonable approximation during magnetofluid evolution. The numerical require-

ment is then to minimize numerical dissipation and dispersion errors which can destroy this

identity. Such a minimization is a signature of a class of inherently nonlinear high-resolution

transport methods that conserve field extrema along flow trajectories while ensuring higher

order accuracy away from steep gradients in advective fields. For our calculations we adapt

the MHD version [21] of the well established general-purpose numerical hydrodynamic model

EULAG predominantly used in atmospheric and climate research [22, 23], hereafter called

EULAG-MHD. The model is based entirely on the spatio-temporally second order accu-

rate nonoscillatory forward-in-time (NFT) advection scheme MPDATA (Multidimensional

positive definite advection transport algorithm) [23]. A feature unique to MPDATA and im-

portant in our calculations is its proven dissipative property mimicking the action of explicit

subgrid-scale turbulence models whenever the concerned advective field is under resolved

[24]. In literature, such calculations relying on the properties of nonoscillatory differencing

are referred as implicit large-eddy simulations (ILES). In a recent work, Ghizaru and cowork-

ers have successfully simulated regular solar cycles [25] while rotational torsional oscillations

in a global solar dynamo has been characterized and analyzed utilizing this ILES scheme of

EULAG-MHD [26]. The present understanding along with open questions on modeling the

solar dynamo are summarized in reference [27].
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In the following we present only the salient features of EULAG-MHD as applied to our

work, whereas for details the reader is referred to Smolarkiewicz and Charbonneau [23] and

references therein. We assume the flow to be solenoidal and set ρ0 = 1 to fix the unit of

measuring mass of the fluid elements. To solve equations (4), they are cast in the following

Eulerian conservative form

∂Ψ

∂t
+ ∇ · (vΨ) = R , (20)

utilizing the solenoidality of velocity v and magnetic field B, with ρ0 = 1 and employing

Cartesian coordinates. The vector Ψ = {vx, vy, vz, Bx, By, Bz}
T constitutes the prognosed-

dependent variables while the right hand side of (20) collects all other terms along with

possible forcing into a vector R. The total potential pressure π′ = (p+B2/2) and an ad hoc

potential π∗ added to the induction equation (3) constitute the diagnosed variables in the

spirit of the hydrodynamic pressure fluctuations in the standard EULAG. An useful vector

representation of this potential would be Φ ≡ {π′, π′, π′, π∗, π∗, π∗}. A model EULAG-MHD

algorithm for integrating an inviscid version of (20) can be viewed as

Ψ
n,ν
i = Ψ̂i +

δt

2
LΨ |n,ν

i +
δt

2
N(Ψ) |n,ν−1

i −
δt

2
∇Φ |n,ν

i , (21)

where n, i represents discrete locations in the model (t,x) domain, δt is the time increment,

L and N are linear and nonlinear parts of the right hand side operators, and ν = 1, ..., m

numbers fixed point iterations. The only explicit element Ψ̂i is given by

Ψ̂i = Ai

(

Ψn−1 + 0.5δtRn−1,vn−1/2
)

, (22)

where A denotes the MPDATA advection scheme and the variable vn−1/2 is a first-order

estimate of the solenoidal velocity at t + 0.5δt. The representation (21) is then cast into a

closed form

Ψ
n,ν
i = [I − 0.5δtL]−1

(

ˆ̂
Ψ − 0.5δt∇Φn,ν

)

i
, (23)

where the explicit element is modified to

ˆ̂
Ψ ≡ Ψ̂ + 0.5δtN(Ψ) |n,ν−1 . (24)
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All prognosed-dependent variables being spatially co-located in (23), the time updated Ψ

is obtained by solving for π′ and π∗ two corresponding elliptic equations, implied by the

solenoidality constraints (5) and (7). The numerical accuracy of viscous drag being physically

inconsequential to CS formations, it is approximated to first order as ∇2vn+1 = ∇2vn +

O(δt), and included in the explicit counterpart
ˆ̂
Ψ of the template algorithm (24). For further

discussion see [21].

The thinness of developing CSs in every numerical experiment is limited by the grid

resolution. In this paper, the CSs are expected to form by progressive pressing of magnetic

subvolumes with favorable magnetic morphology and eventually produce spatial scales which

are smaller than the fixed grid resolution. This insufficient resolution in presence of high

gradients in field variables corresponds to MPDATA in producing a locally effective residual

dissipation of second order sufficient enough to maintain monotonicity of the solution, a

feature well documented in literature [28]. For magnetic field this effective dissipation at

locations of CS formation then results in the numerically assisted magnetic reconnection

which, if localized in both space and time can mimic a physical reconnection and thereby

helping to numerically identify the intermittent locations of CS formation.

IV. RESULTS AND DISCUSSIONS

Direct numerical simulations are carried out with H as the initial condition. To highlight

the role of unbalanced force in formation of CSs, the results are presented for two different

viscosities µ1 = 0.004 and µ2 = 0.0035, with same initial magnetic field and hence Lorentz

force.

To understand the overall dynamics of the magnetofluid, in Figures 3(a) and 3(b) we

have plotted time evolution of the normalized average magnetic and kinetic energies for 1283

uniform grid resolution. The solid and dashed lines correspond to viscosities µ2 = 0.0035

and µ1 = 0.004, respectively. The figures show a rise in kinetic energy at the expense of

magnetic energy along with two distinct peaks in kinetic energy at t = 6s and t = 160s

respectively while the system relaxes from the initial static state. Figures 3(c) and 3(d)

illustrate the corresponding evolution of spatially averaged current density <| J |> and

maximum current density | Jmax |. Both plots show an almost symmetric sharp rise and

decay about t = 6s followed by an intermediate phase of quasi-steady state. A feeble second
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peak is formed at t = 160s which is once again nearly symmetric. The formation of such

peaks in current density can generally be attributed to formation of CSs and their subsequent

decay by magnetic reconnection [29]. Since in our simulations the decay of CSs is entirely

due to numerically assisted reconnection, the two peaks in current density require further

clarifications.

To verify numerical accuracy of the computational model, before, during and after the

formation of peaks in current density, in Figures 4(a) − 4(c) we have plotted the energy

budget for kinetic (dashed line), magnetic (solid line) and total (dotted line) energies (nor-

malized to initial total energy) by calculating the numerical deviations in computed energy

balance equations from their analytically correct expressions given by equations (8)-(10)

for µ = µ2. Figure 4(a) plots the numerical deviations over the whole computational time

whereas Figures 4(b) and 4(c) highlight their peak values for better clarity. The plots show

a maximum numerical deviation of magnitude 0.1 in magnetic energy balance from its ana-

lytically correct value of zero during formation of the first peak in current density confirming

the possibility of the magnetic reconnection at t = 6s. After the first peak, the model re-

gains its desired numerical accuracy, loosing it again by a marginal amount during formation

of the second peak in current density (Figure 4(c)). This almost accurate maintenance of

energy balance in the intermediate phase along with numerically acceptable small deviations

at the peaks then provides the necessary basis to assume the MPDATA generated residual

magnetic diffusivity in response to under-resolved magnetic field, to be intermittent and

adaptive. A seamless transition from DNS to ILES is then a possibility where the under-

resolved scales are removed by this residual diffusivity and the evolution is well resolved over

the whole computational time; a property of MPDATA which has already been well studied

for Navier-Stokes flow of a neutral fluid [28]. The reconnection in the computational model

then reasonably mimics a physical reconnection in presence of a real diffusivity.

To further understand the global dynamics, in Figure 3(e) we have plotted the magnitude

of Lorentz force averaged over the computational domain. The plot shows an initial sharp

rise just before the first peak in current density after which it decreases substantially. At

the end of the quasi-steady state, the Lorentz force once again rises marginally before the

second peak in J followed by a decay. To better resolve the first peak in current density,

computations are performed with varying grid resolutions. The time variations of <| J |>

for different uniform grid resolutions varying from 643 to 2243 in steps of 323, are plotted
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in Figure 5(a) complemented by a plot of grid resolution vs. | J |max in Figure 5(b). Both

the plots furnish further indirect evidences of CS formation while in addition, Figure 5(b)

agrees with the general understanding that the | J |max increases with an increase in grid

resolution [30, 31]. Figure 5(c) also shows a delay in appearance of the first peak in current

density and hence the reconnection, with an increase in grid resolution.

From the above discussions and noting that a zero Lorentz force describes a force-free

field while the simulated reconnection mimics the physical reconnection, the following pic-

ture evolves. The initial nonzero Lorentz force pushes the magnetofluid resulting in an

increase in kinetic energy at the expense of magnetic energy. As the magnetofluid is pushed

by the initial Lorentz force the magnetic field gradients sharpen forming CSs, till the char-

acteristic length scale over which the magnetic field varies goes below the model resolution.

The consequent reconnection then lowers the magnetic energy and hence magnitude of B,

while dissipation of smaller scales reduce the gradient of B and hence magnitude of current

density J. The combined effect is that of lowering the volume averaged Lorentz force, vide

Figure 3(e), which may describe an incomplete Taylor relaxation [32]. In the intermediate

phase the magnetofluid evolves quasisteadily in response to this small Lorentz force. At

t = 160s the second peak is formed, once again through CS formations and their eventual

decay as is evident from the corresponding loss of numerical accuracy in the energy balance

equations (vide Figure 4(c)). An important observation in this regard is the large difference

in amplitude between the two peaks in spite of their common origin, i.e., the loss in model

resolution. A more overt evidence of CS formation is obtained by direct volume rendering

(DVR) of | J | (Figure 6) which depicts the initial three dimensional structure of current

density to become almost two dimensional as the current density peaks and generates small

scales. The formation of CSs depends significantly on viscosity as can be inferred from

Figure 3(c) where the peaks in current density appear at two different times for viscosities

µ = 0.0035 and µ = 0.004. This is in accordance with our physical expectation that with

the same Lorentz force, a highly viscous plasma will take longer time than an otherwise less

viscous plasma to be pushed till the smallest model resolution is achieved.

Further insight into the dynamics of these CSs are obtained by understanding evolution

of magnetic fields and current densities near the two and three dimensional nulls depicted

in Figure 1(a). The following analyses correspond to simulations with viscosity µ0 = µ2 and

uniform grid resolution of 1283. Figure 7 plots the time sequence of magnetic field lines at
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the neighborhood of a pair of 3D nulls. Each time frame is overplotted with a preselected

isosurface of J having a value which is 40% of | J |max (J40) at the first peak in current

density. The initial unbalanced Lorentz force pushes the magnetofluid and hence the spine

axes and fan surfaces toward each other, thereby developing gradient in magnetic field at the

separator. This increased gradient in magnetic field results in a growth of current density as

observed at t = 6s which is cotemporal with the first current density peaks in Figure 3(c).

The appearance of the J40 isosurface near t = 6s at the separator is a direct evidence of

CS formation. The decay of CSs after t = 6s is due to the reconnection as pushing of the

magnetofluid is continued below the model resolution.

The collapse of shoe-shaped nulls also have significant contribution to the first peak in

current density. Each point on a shoe-shaped null is an X-type neutral point while loci of

such points tracing a curved line in 3D space. Figure 8 shows the evolution of a pair of

shoe-shaped nulls. This pair spans along the y-axis near x = π/2, z = π. During evolution,

CSs are developed first at the maximum curvature region of the shoe-shaped pair followed

by CS formations at other regions. Most of the current density is observed to grow near

the maximum curvature region, cotemporally with first peaks in current densities at t = 6s.

Formation and decay of CSs away from the maximum curvature region of a shoe-shaped

null is observed to be near t = 16s and is approximately cotemporal with the second spike

in numerical deviation of magnetic energy balance plotted in figure 4(b).

In Figure 9 we have illustrated the evolution of 2D nulls overplotted with the isosurface

of 40% of | J |max at the second peak in current density. The CSs for these 2D nulls are

observed to be cotemporal with the second peak in current density at the neighborhood of

t = 160s. In the following, we describe a possible physical scenario resulting in this delayed

collapse. It can easily be checked that the x and z components of the initial Lorentz force

is zero only in the immediate neighborhood of the x = z = π null line. In response to this

nonzero Lorentz force the magnetofluid rotates with larger angular velocity which increases

in an outward direction from the y-line and deforms magnetic field lines inhomogeneously at

the plane of the 2D null. This increase in rotational kinetic energy is cotemporal with the

increase in average kinetic energy plotted in Figure 3(b). The curvature of magnetic field

lines and hence the magnetic tension then increases locally around the null at the expense

of kinetic energy of plasma motion. This increased magnetic tension then pushes back the

plasma in opposite direction at the quasi-steady phase of evolution where the kinetic energy
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and hence the force acting on a fluid element is almost zero. The resulting motion is the

observed to-and-fro oscillations of the field lines near the 2D null depicted in Figures 9(b)

and 9(c). More importantly, during each back and forth rotation a fraction of kinetic energy

is dissipated via viscosity. When this kinetic energy is mostly dissipated i.e, at the onset of

the quasisteady phase, the rotational oscillations cease and the X-type configuration remains

with asymmetric field structure (Figure 9(d)) having different curvatures of magnetic field

in adjacent quadrants. Because of this asymmetry, the imbalance in magnetic tension then

pushes the magnetofluid from two opposite quadrants towards each other. Subsequently,

due to the frozen-in condition, the magnetic pressure and hence field intensity increases

locally at the high curvature region at each quadrant. When the field intensity becomes

sufficiently strong, the optical analogy dictates the magnetic field lines to become concave

toward this local maximum along with the development of an appreciable current density.

Figure 9(e) depicts such concave field lines as anticipated in chapter 8 of [7]. The boundary

of the overplotted ellipse traces the field lines to provide a ready reckoning of this concavity.

Finally, at t = 160s the X-type neutral point is squashed to two Y-type neutral points with

an extended CS, shown in Figure 9(f). This squashing is more effective in our calculations

since the flow is volume preserving, so that a compression along two quadrants would result

in stretching of the perpendicular quadrants. Since at different constant y−planes the field

lines have different orientations in the neighborhood of a null, the corresponding CS is

twisted (Figure 10) and decays through the reconnection to generate the second peak in

current density.

The above process of CS formation through squashing together two initially separate

regions of field (two quadrants of an X-type null), producing a gap in the intervening flux

surfaces (the region of exclusion marked by the ellipse) converting an X-type null to two Y-

type nulls then raises the important question on the relative effects of viscosity and magnetic

diffusivity in determining the thickness of the CS. The hydrodynamics of these thinning CSs

has been studied analytically by solving Navier-Stokes equations in an idealized scenario of

two flux surfaces approaching each other under differential kinetic pressure [7]. The minimum

thickness of a CS was found to be determined by magnetic diffusivity instead of viscosity

even in the case of the latter being larger in magnitude. Simulations presented in this paper

do not have the scope to explore this finding because of an absence of physical resistivity,

however a coarse estimation is possible. We note that the thickness of the CS formed in
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Figure 9(f) is actually limited by the fixed grid resolution of the 1283 computation that is

otherwise well resolved. Scales at the grid resolution are dumped selectively by the residual

dissipation of MPDATA [33]. This is apparent from the peaked profile of the numerical

deviations in both magnetic and kinetic energy balances in the neighborhood of t = 160s,

plotted in Figure 4(c). The smallest scales then are the ones below which the residual

dissipation dominates and the numerical deviations in energy balance decrease. Assuming

the effect of residual dissipation on kinetic and magnetic energy rates to be comparable, the

observed higher value of numerical deviation in change in magnetic energy over kinetic energy

makes magnetic diffusion to be more effective than its viscous counterpart as concluded in

reference [7] (chapter 9). But above arguments are only qualitative and require further

numerical investigation which we leave to a future work.

V. SUMMARY

The paper numerically demonstrates CS formation in an incompressible, viscous, ther-

mally homogeneous magnetofluid with infinite electrical conductivity and periodic boundary

conditions. It also emphasizes the role of an unbalanced force pushing the magnetofluid

against a viscous drag in formation of CSs. Such a study is necessary since in a multitude of

physical systems like solar corona, the fluid Reynolds number is much smaller than the mag-

netic Reynolds number and viscous effects cannot be neglected. The initial magnetic field

is a superposition of two linear force-free fields and hence has possible relevance to eruptive

processes in solar atmosphere driven by magnetic flux emergence. The paper presents both

indirect and direct evidences for CS formations and their eventual decay by the numerically

assisted reconnection mimicking physical magnetic reconnection in terms of maintaining

computed energy balance to a reasonable numerical accuracy. It is observed that the time

scales over which the CSs are forming is sensitive to viscosity. With other parameters and

hence the force counterbalancing viscous drag kept constant, CSs develop at an earlier time

for a less viscous magnetofluid as is evident from the plots of average and maximum electric

current densities. These results are in general agreement with the understanding that CSs

are forming through a progressive pressing of magnetic subvolumes. To understand the limi-

tations imposed by finite grid resolutions on the formation of CSs, further computations are

performed with varying grid resolutions. It is found that the maximum of average electric
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current density increases almost linearly with increasing grid resolutions. This result simul-

taneously verifies the importance of progressive pressing of magnetic subvolumes to develop

CSs as well as the grid resolutions required to achieve them in numerical computations. A

higher grid resolution would delay the occurrence of the reconnection since further pressing

of the magnetofluid is required for the model resolution to go below the grid resolution,

resulting in formation of the current density peak at a later time compared to the same for

a lesser resolution run with other parameters kept constant.

A more direct evidence for CS formation is obtained by analyzing the dynamics of mag-

netic field topology near the two and three dimensional magnetic nulls in the initial magnetic

field H. It is observed that the current density increases in the neighborhood of both three

dimensional and two-dimensional nulls. For the specific initial magnetic field used in this

work, the formations of CSs and their eventual decay at the neighborhood of three dimen-

sional nulls precedes the same near the two dimensional nulls. This delay in CS formation

about the two types of magnetic nulls is explained in terms of the initial Lorentz force. The

only nonzero component of the initial Lorentz force at the immediate neighborhood of a

2D null is perpendicular to the plane containing the null point whereas for the 3D nulls all

components of initial Lorentz force are nonzero in the immediate neighborhood. A progres-

sive pressing of the magnetofluid in right direction then generates CSs near 3D nulls and

contributes to development of the first peak in current density. In the neighborhood of 2D

nulls the Lorentz force pushes the magnetofluid in a direction perpendicular to the direction

favored for CS formation and hence the delay. Eventually a CS is formed by squashing of

X-type nulls to two Y-type nulls through a series of complex motions along with an inter-

mediate appearance of a concave gap, consistent with the optical analogy. A continuous

extension of these 2D CS in the third direction results in a twisted current sheet, the decay

of which gives the second peak in current density.

Overall, the simulations presented in this paper are suggestive of CS formation through

progressive pressing of magnetic subvolumes where the initial magnetic field is a superpo-

sition of two linear force-free fields; but with a caveat. The formation of CSs observed in

this paper depends strongly on the initial magnetic field or more precisely to the existence

of magnetic nulls in the initial state. The CSs are seen to develop near these nulls only, the

presence of which is automatically guaranteed in an initially triply periodic magnetic field.

A more realistic simulation would involve a nonperiodic boundary which is left as a future
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assignment.
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FIG. 1: (color online). Figure (a) shows magnetic nulls represented by isosurfaces of H with

parameters H0 = 0.01 and d0 = 0.05 for k = {1, 1, 1}, l = {2, 2, 2} and γ = 0.5. A pair of 3D nulls

with corresponding spine axes and fan planes are shown in Figure (b). The field topology along

with separatices near the 2D null located at x = π, y = 3π/2, z = π is depicted in Figure (c) which

is of X-ype geometry.
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FIG. 2: (Color online). Figures (a) and (b) depict the magnetic nulls represented by isosurfaces

with parameters H0 = 0.01 and d0 = 0.05 of force-free magnetic fields B1 and B2 separately. The

connectivity of field lines in the neighborhood of these nulls are shown by solid lines.
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FIG. 3: History of (a) magnetic energy, (b) kinetic energy, (c) <| J |>, (d) | Jmax |, (e) grid

averaged Lorentz force, for viscosities µ1 = 0.0035 (solid lines) and µ2 = 0.004 (dashed lines). For

better clarity in representing the peaks, the time axis is morphed to t′ = s0t with s0 = 4 from

t = 0s to t = 80s and s0 = 1 for t > 80s to t = 240s
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FIG. 4: History of energy budget for total (dotted line), kinetic (dashed), and magnetic (solid)

energies for viscosity µ1 = 0.0035, drawn for full computational domain (4(a)) and localized at the

two peaks of current density (4(b) and 4(c)).
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FIG. 5: Figure (a) depicts the evolution of current densities averaged over the computational

volume, for different grid resolutions varying from 643 to 2243 in steps of 323. Figures (b) and

(c) illustrate the variations of | Jmax | and the instant at which J =| Jmax | with increasing grid

resolutions. The plots are in agreement with the general expectation that an increase in grid

resolution would delay the formation of peaks in current density while increasing their amplitudes.
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FIG. 6: (Color online). Time sequence of direct volume rendering of <| J |> for 1283 uniform grid

and viscosity µ = 0.0035, showing growth and decay of the current density.
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FIG. 7: (Color online). Time evolution of 3D magnetic nulls and corresponding spine and fan

surfaces, overplotted with isosurface (in red) of current density having a magnitude of 40% of its

peak value highlighting the locations where current sheets are forming.

27



FIG. 8: (Color online). History of a pair of adjacent shoe-shaped magnetic nulls and neighbouring

magnetic field lines, overplotted with the same isosurface as in Figure 7 to visualize current sheet

formations. The viscosity and grid resolutions are µ = 0.0035 and 1283 respectively.
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FIG. 9: (Color online). Figures (a) − (f) illustrate the time evolution of a representative 2D

magnetic null located at x = π, y = 3π/2, z = π and null fields overplotted with isosurfaces (in red)

of 40% of | J |max at the second peak in current density, appearance of which at t=160s confirms

the formation of current sheet at the Y-type null.
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FIG. 10: (Color online). Current sheet along y and x = z = π at t = 160s represented by the same

isosurface of current density as in Figure 9, plotted for two different viewing angles to emphasize

its twisted nature.
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