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Abstract

According to Parker’s magnetostatic theorem, tangential discontinuities in magnetic field, or

current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite elec-

trical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic

field in achieving force-balance everywhere and preserving its topology while remaining in a spa-

tially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas

20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of

the vector magnetic field. The magnetohydrodynamic simulations presented here complement the

above work by demonstrating CS formation by employing a novel approach of describing the mag-

netofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The

magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a

direct visualization of the CS formation, helpful in understanding the governing dynamics. The

simulations confirm development of tangential discontinuities through a favorable contortion of

magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation

from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is

in its demonstration of CS formation at spatial locations away from the magnetic nulls.

PACS numbers: 52.25.Xz, 52.30.Cv, 52.35.Vd, 95.30.Qd
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I. INTRODUCTION

A magnetofluid with infinite electrical conductivity evolves with magnetic field lines being

tied to the fluid parcels – referred to as the flux freezing or frozen-in condition. As a

consequence, the magnetic flux across an arbitrary fluid surface [1], physically identified by

the material elements lying on it, remains conserved in time. Depending on the topology of

magnetic field, a subset Γ of fluid surfaces can be identified such that the loci of magnetic

field lines are entirely contained on the Γ which, in literature are termed as magnetic flux

surfaces (MFSs). It is then imperative that the magnetic flux through a MFS is zero. Under

the condition of flux-freezing, the magnetic field lines are tied to the material elements

identifying Γ and hence MFS are also valid fluid surfaces. This validity holds only under the

condition of flux-freezing and any evolving magnetofluid must maintain it at every instant

till a violation of the condition.

To focus on ideas, let us consider a volume of magnetofluid as a stack of MFSs, albeit of

complex geometry. In an evolving magnetofluid, these flux surfaces are expected to contort

non-uniformly in response to an unbalanced force and result in deforming magnetic field

lines lying on the surface. With favorable contortions, a physical scenario is possible where

two portions of a given MFS or two entirely different MFSs come arbitrarily close to each

other by squeezing out the interstitial fluid so that an infinitesimally small resistivity can

become significant. Under this circumstance, the magnetic field may become discontinu-

ous depending on the relative orientation of magnetic field lines lying on the approaching

surfaces. From Ampere’s law then a current sheet (CS) develops which is an enhanced

volume-current density localized at the surface across which the magnetic field is discontin-

uous.

The above rationale of CS formation is in conformity with the optical analogy of magnetic

field lines proposed by Parker [2–5]. In its skeletal form, the analogy uses the similarity in

field line equations on a flux surface S of a potential (and hence untwisted) field Bp with

the optical ray paths in a medium of refractive index | Bp |. The streaming of field lines on

S then follows Fermat’s principle, resulting in deflection of field lines concavely towards a

sufficiently local maximum in | Bp |. Such deflections in a bunch of field lines then generates

a hole on the flux surface co-located to the region where | Bp |≈| Bp |max. In a general

scenario of many such contorting flux surfaces, two MFSs adjacent to the surface S can get

2



contorted in such a way that the corresponding deformed field lines can intrude through the

hole. These intruding field lines being in general not parallel, a formation of CS is inevitable

at the contact.

An extension of the optical analogy to twisted magnetic fields [5, 6] is straightforward

and, provides a framework on which the computations presented in this work are based.

This extension uses a representation of a twisted magnetic field B in terms of superposing

untwisted component fields Bi [7]. Each of these component fields then can be expressed in

terms of a pair of Euler Potentials (EPs) (ψi, φi) [8, 9]. In equation form,

B =
∑

i

Bi =
∑

i

Wi(ψi, φi)∇ψi ×∇φi , (1)

where the index i specifies a component field with magnitude Wi. Both ψi = const. and

φi = const. surfaces are also global magnetic flux surfaces of the component field Bi, since

Bi · ∇ψi = Bi · ∇φi = 0. The magnetic field lines being the lines of intersection of the

two surfaces, the magnetic topology is determined by the EPs. The optical analogy is then

applicable to each of the component fields with their globally defined flux surfaces as pointed

out in reference [6]. Further the superposition being linear, a formation of CS on any one

of the flux surfaces is expected to enhance the total current density J = c/4π(∇ × B).

Recognizing the importance of MFSs as described in the optical analogy above, a direct

tracking of magnetic flux surface evolution then provides the necessary visualization and

hence a better understanding of the inherent dynamics of CS formation.

It is important to note that a global flux surface representation of the twisted field B is

in general not feasible when the field is either periodic or the corresponding field lines are

contained wholly within a finite domain. It is then plausible that a single field line may fill

up the whole domain [10, 11] and thereby destroy the geometric meanings of the field line

as well as the associated flux surfaces [1].

The analytical theory of spontaneous CS formation in a static magnetofluid with infinite

electrical conductivity, referred to as the Parker’s magnetostatic theorem, was first proposed

by Parker [12, 13] and is revisited in reference [14]. The theorem is based on the impossibility

of satisfying the two stringent conditions of ideal MHD— the local force balance and the

conservation of global magnetic topology as a consequence of flux freezing, with an interlaced

magnetic field continuous everywhere. The impossibility in simultaneous satisfaction of these
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two constraints of ideal MHD can further be explained in terms of the overdetermined nature

of magnetostatic partial differential equations nonlinearly coupled to the integral equations

imposing the field topology, and the hyperbolic nature of the torsion coefficient α0 of a

force-free equilibrium characterized by zero Lorentz force [15]. It is further demonstrated

by Low [16] that the magnetic topologies of the force-free fields obtainable from an uniform

magnetic field through continuous deformation by magnetic footpoint displacements at the

end plates of Parker’s magnetostatic theorem are a restricted subset of the field topologies

similarly created without imposing the force-free condition. The theorem then follows by

concluding that a continuous nonequilibrium field with a topology not in this subset must

relax to a terminal state containing magnetic discontinuities.

The above discussions then yield a salient point. A successful numerical demonstration

of CS formation in an evolving magnetofluid must satisfy the two perquisite conditions; in-

variance of magnetic topology as a consequence of flux freezing, and the local force-balance

obtained in a terminal state of the evolution. The invariance of magnetic topology is a

condition which is to be imposed by a proper choice of numerical model whereas the con-

dition of local force balance can be realized by allowing the magnetofluid to relax strictly

through viscous dissipation of kinetic energy at the expanse of a finite magnetic energy

which has a lower bound fixed by the field topology. To elaborate further, we consider an

infinitely conducting, incompressible, and viscous magnetofluid which is described by the

MHD Navier-Stokes equations

ρ0

(
∂v

∂t
+ (v · ∇)v

)
= µ0∇2v +

1

4π
(∇×B)×B−∇p, (2)

∇ · v = 0, (3)

∂B

∂t
= ∇× (v ×B), (4)

∇ ·B = 0, (5)

in standard notations, where ρ0 and µ0 are uniform density and coefficient of viscosity

respectively. We focus only on the systems periodic in all three Cartesian coordinates. From

an initial nonequilibrium state, this magnetofluid would relax towards a terminal state by

converting magnetic energy WM to kinetic energy WK through equations
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dWK

dt
=
∫

1

4π
[(∇×B)×B] · v d3x−

∫
µ0 |∇ × v|2 d3x , (6)

dWM

dt
= −

∫
1

4π
[(∇×B)×B] · v d3x , (7)

dWT

dt
= −

∫
µ0 |∇ × v|2 d3x , (8)

the integrals being over a full period. The Lorentz force being conservative, the irrecoverable

loss of kinetic energy is due to viscous dissipation only. The terminal relaxed state is then

expected to be in magnetostatic equilibrium as the magnetic field cannot decay to zero

because of the flux freezing. Since in absence of magnetic diffusivity the terminal relaxed

state is identical in magnetic topology to the initial state; Parker’s magnetostatic theorem

predicts development of CSs in the terminal state if the initial magnetic field is topologically

complex. The importance of viscous relaxation then amounts to providing a local force-

balance in a magnetofluid evolving with invariant magnetic topology.

Although introduced here as a mathematical requirement to demonstrate CS formation,

a viscous relaxation is also physically realizable depending on the ratio of fluid Reynolds

number (RF ≈ V L/µ) to magnetic Reynolds number (RM ≈ V L/η), where L and V length

and speed characteristic to the system. For instance, in solar corona RF ≈ 10 in comparison

to RM ≈ 1010 [17] opening up the possibility of a dominant viscous drag at scales larger

than the scales where magnetic diffusion is effective. Other examples where the ratio of

viscous to resistive dissipation is of the order of unity or more, can be found in a variety of

circumstances related to stellar and galactic plasmas [5].

The possibility of CS formation through a viscous relaxation have already been demon-

strated in two recent numerical experiments [1, 6], referred hereafter as NE1 and NE2 respec-

tively. Although conceptually the same, the two experiments utilize two different numerical

approaches. In NE1, the initial magnetic field is represented in terms of two intersecting

families of global MFSs each of which is a level surface defined by a constant Euler potential

(EP). The advantage of NE1 is then in its advection of MFSs instead of magnetic field,

leading to simpler equations along with elimination of post-processing errors in determin-

ing magnetic topology. An apt trade-off for this advantage is the choice of an untwisted

magnetic field to construct the relevant initial value problems (IVPs), as only for such fields

global MFSs exist [7]. However, the magnetic field in astrophysical plasmas are believed to
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be twisted [18] (and references therein). Consequently the NE2 demonstrates CS formation

with an initial twisted magnetic field in relevance to general magnetic morphology of the

solar corona. For the purpose, NE2 is based on the advection of magnetic field rather than

the flux surfaces. The feature common to both NE1 and NE2 is the finding that the CSs

develop near the magnetic field reversal layers, or the magnetic nulls, which are the natural

sites for magnetic field to become discontinuous.

Against the above backdrop, the motivation of the present paper is to demonstrate CS

formations with an initial twisted magnetic field represented in terms of appropriate MFSs

constructed by using equation (1). The simulations are performed in an idealized scenario

of incompressible magnetofluid with constant viscosity and periodic boundaries. The rep-

resentation (1) along with flux surface advections, enables a direct visualization and hence

a better conceptual understanding of CS formation through contortion of relevant flux sur-

faces. Most importantly, the comprehensive numerical experiments reported here confirm

the development of CSs at locations away from the magnetic nulls and hence support Parker’s

magnetostatic theorem in its generality.

The paper is organized as follows. The initial value problem (IVP) and the numerical

model are discussed in sections II and III while simulation results are presented in section

IV. Section V summarizes these results and highlights the key findings of this work.

II. INITIAL VALUE PROBLEM

To develop a relevant initial value problem, we consider the magnetic field B =

{Bx, By, Bz} where

Bx =
√
3 sin

(
2π

L
x
)
cos

(
2π

L
y
)
sin

(
2π

s0L
z
)
+ cos

(
2π

L
x
)
sin

(
2π

L
y
)
cos

(
2π

s0L
z
)
, (9)

By = −
√
3 cos

(
2π

L
x
)
sin

(
2π

L
y
)
sin

(
2π

s0L
z
)
+ sin

(
2π

L
x
)
cos

(
2π

L
y
)
cos

(
2π

s0L
z
)
,(10)

Bz = 2s0 sin
(
2π

L
x
)
sin

(
2π

L
y
)
sin

(
2π

s0L
z
)
, (11)

defined in a triply periodic Cartesian domain of horizontal (x and y) extent L and vertical

(z) extent s0L. The factor s0 is a dimensionless constant and L represent the characteristic

length scale of the system. The above choice is based on the understanding that for s0 = 1,

B reduces to a linear force-free field Blfff satisfying
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∇×Blfff = α0Blfff , (12)

with α0 = (2π
√
3)/L. The parameter α0 is known to represent magnetic circulation per

unit flux [14] and hence is a measure of the twist in magnetic field lines. The Lorentz force

exerted byBlfff is zero and the equilibrium is maintained by a balance between the magnetic

tension and the magnetic pressure [19]. The corresponding magnetic topology is complex

enough in terms of twisted field lines along with the usual abundance of two-dimensional

(2D) magnetic nulls complemented with sparsely located three-dimensional (3D) magnetic

nulls [6]. Based on the above understanding, the field B can be perceived to be obtainable

from Blfff with a scaling factor s0 6= 1. The Lorentz force exerted by B is non zero and has

the functional form

(J×B)x = 4
(
1− s20

)
cos

(
2π

L
x
)
sin

(
2π

L
x
)
sin2

(
2π

L
y
)
sin2

(
2π

s0L
z
)
, (13)

(J×B)y = 4
(
1− s20

)
sin2

(
2π

L
x
)
sin

(
2π

L
y
)
cos

(
2π

L
y
)
sin2

(
2π

s0L
z
)
, (14)

(J×B)z = 2
(
s0 −

1

s0

)
sin2

(
2π

L
x
)
cos2

(
2π

L
y
)
sin

(
2π

s0L
z
)
cos

(
2π

s0L
z
)

+2
(
s0 −

1

s0

)
cos2

(
2π

L
x
)
sin2

(
2π

L
y
)
sin

(
2π

s0L
z
)
cos

(
2π

s0L
z
)
. (15)

Hereafter, for all computations we set L = 2π. The modified B is then H = {Hx, Hy, Hz}
where

Hx =
√
3 sin x cos y sin

(
z

s0

)
+ cos x sin y cos

(
z

s0

)
, (16)

Hy = −
√
3 cosx sin y sin

(
z

s0

)
+ sin x cos y cos

(
z

s0

)
, (17)

Hz = 2s0 sin x sin y sin
(
z

s0

)
, (18)

defined in the domain of volume s0(2π)
3. We use this modified field H as the initial magnetic

field for simulations presented in this paper. The figure 1 illustrates that the maximum am-

plitude of Lorentz force (solid line) along with magnetic helicity (dashed line) and magnetic

energy (dotted line) integrated over the domain volume, increase with s0. For a comparison

with the linear force-free field, the plotted magnetic energy and the helicity are normalized

to their corresponding values for s0 = 1. To further quantify this increase we note that a
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straightforward calculation yields the domain integrated magnetic energy and the magnetic

helicity (KM) in the following form

WM = 2π2
(
2 + s20

) ∫ 2πs0

0

dz , (19)

KM = 2
√
3π2s0

∫
2πs0

0

dz , (20)

where the factor s0 outside the integral sign is contributed by the amplitude of Hz. The

limits of the definite integrals indicate further contributions of s0 to the values of WM and

KM through the size of the vertical extension. We must point out here that the above

calculation of magnetic helicity uses its classical expression

KM =
∫

A ·HdV , (21)

with A as the vector potential and the integral being over the domain volume. This expres-

sion of KM for a periodic domain, as in our case, is valid only with a constant gauge. A

more general gauge independent representation of magnetic helicity along with the involved

physics can be found in references [20–22]. In continuation, it is also to be emphasized that

the simulations presented here preserve the initial magnetic topology, once fixed by the EPs,

by numerical means discussed latter in the paper. Thus, an explicit analysis of magnetic

helicity in our simulations is inconsequential, and we do not pursue in this direction further.

For a selection of s0 appropriate to our simulations, we recall from figure 1 that the initial

Lorentz force increases with s0. The selection criteria is then based on the generation of

an initial Lorentz force such that the evolving CSs can be well resolved in time and space

with a minimal computational expanse. Based on an auxiliary numerical study, we select

s0 = 2 and s0 = 3 for the simulations discussed. The figure 2(a) illustrates the distribution

of 2D and 3D magnetic nulls in the computational domain for s0 = 3. In figure 2(b) we have

illustrated the same for s0 = 1 to demonstrate the similar spatial distribution of magnetic

nulls for the corresponding lfff.

To put our work in general relevance to the contemporary studies of CS formation utilizing

stretched magnetic field [14, 23, 24]; we note that the functional form of H complemented

with a vertical extension of 2πs0 alters the wave number of a Fourier mode in the z-direction

by an amount 1/s0. For s0 > 1 then, the corresponding wavelength gets elongated by an
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amount s0 in comparison to the same for the lfff characterized by s0 = 1. For a choice

of s0 > 1 then,the computational setup presented here inherently couples deepening of the

vertical extension to a deviation of H from its corresponding linear force-free configuration.

To obtain an EP representation of H utilizing equation (1), we note that an individual

component field Hi has to be untwisted in order to have two intersecting families of global

MFSs on which the field lines of Hi lye. Utililizing this criteria, a valid EP representation

of H can be written with H =
∑

3

i=1Hi, where

H1 =
√
3 sin x cos y sin

(
z

s0

)
êx −

√
3 cosx sin y sin

(
z

s0

)
êy , (22)

H2 = cosx sin y cos
(
z

s0

)
êx + s0 sin x sin y sin

(
z

s0

)
êz , (23)

H3 = sin x cos y cos
(
z

s0

)
êy + s0 sin x sin y sin

(
z

s0

)
êz . (24)

The component fields H1, H2 and H3 are solenoidal and untwisted, the latter can be verified

by noting that (∇ ×Hi) ·Hi = 0. An EP representation for each component field is then

given by

Hi = ∇ψi(x, y, z)×∇φi(x, y, z) , (25)

where i = 1, 2, 3. Once identified, the amplitude of EPs remain invariant in time — as

pointed out in reference [1]. The corresponding advection equations are realized by noting

that a particular level set of each of the above six EPs can also be identified to fluid surfaces.

Once identified, the level sets evolve as fluid surfaces defined by the material elements lying

on it and thus satisfy the advection equations

dψi

dt
= 0 , (26)

dφi

dt
= 0 , (27)

implying

∂ψi

∂t
+ v · ∇ψi = 0 , (28)

∂φi

∂t
+ v · ∇φi = 0 , (29)
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for i = 1, 2, 3. It is understood that an identification of level sets of EPs as fluid surfaces

is non-unique but once identified, the above advection equations maintain this identity

throughout their evolution under the condition of flux-freezing. For details, the reader

is referred to [1]. A suitable EP representation of the initial magnetic field H is then

constructed as

H1 = ∇
(
s0
√
3 sin x sin y

)
×∇

(
− cos

(
z

s0

))
, (30)

H2 = ∇
(
s0 cosx sin

(
z

s0

))
×∇ cos y , (31)

H3 = ∇
(
s0 cos y sin

(
z

s0

))
×∇ (− cosx) . (32)

Figures 3(a), 3(b) and 3(c) illustrate the level sets of the above EPs in pairs — (ψ1, φ1),

(ψ2, φ2) and (ψ3, φ3) respectively, with ψ-constant surfaces in color red and φ-constant sur-

faces in color blue, overlaid with field lines (in color green) which are closed curves since the

component fields are untwisted. The plots are for s0 = 3. It is straightforward to confirm

the existence of a field-reversal layer in H1 at z = 3π. Further from figure 3(a), the axes

of ψ1 constant Euler surfaces are lines along the z-direction located at (x, y) = (π/2, π/2),

(x, y) = (3π/2, π/2), (x, y) = (π/2, 3π/2) and (x, y) = (3π/2, 3π/2) respectively. These

axes represent O-type neutral lines at which | H1 |= 0. Likewise, the other two component

fields H2 and H3 have field-reversal layers at planes y = π and x = π respectively. The

O-type neutral lines for H2 are along the y-axis and are located at (x, z) = (π, 3π/2) and

(x, z) = (π, 9π/2). Whereas, H3 has O-type neutral lines oriented along the x-direction and

is located at (y, z) = (π, 3π/2) and (y, z) = (π, 9π/2).

III. NUMERICAL MODEL

A successful numerical demonstration of spontaneous CS formation demands the frozen-

in condition to be satisfied with a high fidelity such that the identity of a fluid surface as a

magnetic flux surface is maintained to a reasonable accuracy during magnetofluid evolution.

The computational requirement is then a minimization of numerically generated dissipation

and dispersion errors. If present, these errors destroy the connectivity of the flux surfaces

and are thus ambiguous to their evolution in a magnetofluid under flux-freezing. Such a min-

imization is a signature of a class of inherently nonlinear high-resolution transport methods
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that conserve field extrema along flow trajectories while ensuring higher order accuracy away

from steep gradients in the advected fields. For our calculations we adapt the MHD version

[25] of the well established general-purpose numerical hydrodynamic model EULAG pre-

dominantly used in atmospheric and climate research [26, 27]. The model is based entirely

on the spatio-temporally second order accurate nonoscillatory forward-in-time (NFT) advec-

tion scheme MPDATA (Multidimensional Positive Definite Advection Transport Algorithm)

[27].

An important feature of MPDATA relevant to our calculations is its proven effectiveness

in performing implicit large-eddy simulations (ILESs) by generating an intermittent and

adaptive residual dissipation that mimics the action of explicit subgrid-scale turbulence

models whenever the concerned advective field is under-resolved [28]. In a recent work,

Ghizaru and coworkers have successfully simulated regular solar cycles [29] while rotational

torsional oscillations in a global solar dynamo has been characterized and analyzed utilizing

this ILES scheme [30]. The present understanding along with open questions on modeling

the solar dynamo are summarized in reference [31]. Furthermore, in the recent work [6] we

used this ILES mode to obtain numerically induced magnetic reconnections which decay the

developing CSs. In the present work, we utilize this MPDATA generated residual dissipation

to provide a computational upper limit of the growth in volume current density for a given

fixed grid resolution.

In general, the EULAG model solves inhomogeneous transport equations for either com-

pressible or incompressible flows cast in time-dependent curvilinear coordinates. In Carte-

sian coordinates, as employed in our case, the inhomogeneous transport PDEs take a simple

from

∂ρ0Ψ

∂t
+∇ · (ρ0vΨ) = ρ0R , (33)

where R is a forcing associated with the specific variable Ψ transported in the flow. For

example, this forcing can be attributed to the total of pressure gradient, Lorentz force and

viscous drag for the momentum transport. Under the assumption of constant density ρ0 and

the magnetofluid to be thermally homogeneous, the variable Ψ is a generic representation of

the three components of velocity and the six EPs representing the magnetic field. Important

for the efficacy of integration, the transport of ψi and φi takes the elementary homogeneous

form with R ≡ 0. Noteworthy, following the experience of [29], the source attributed to the
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Lorentz force is evaluated in the conservative form ∝ ∇·B⊗B, with the magnetic pressure

included into the combined pressure gradient term. This source form due to the Lorentz

force lends itself to either centered or upwinding discretizations; with an equivalent outcome

in the present study, owing to substantial viscous effects in the Navier-Stokes equation.

An EULAG template algorithm for integrating (33) over time interval δt on a discrete

grid δix can be compactly written in a functional form

Ψn+1

i = Ai

(
Ψn + 0.5δtRn,vn+1/2, ρo

)
+ 0.5δtRn+1

i ≡ Ψ̂i + 0.5δtRn+1

i , (34)

where Ψn+1

i is the solution sought at the grid point (xi, t
n+1) , A is a second-order-accurate,

finite-volume operator representing MPDATA., vn+1/2 is a first-order estimate of the trans-

portive solenoidal velocity at t + 0.5δt, and ρ0 = constant in our problem. For inviscid

dynamics, all terms at tn+1 are lumped into the variable Rn+1

i . Because MPDATA is fully

second-order-accurate in time and space, solving (34) for the Euler potentials prior to mo-

menta readily provides the O(δt)3 estimates of B, via (25), and of the Lorentz force at tn+1.

This considerably simplifies the solution procedure compared to the conventional MHD

approach [25], and leads to a fully second-order solution for the governing system while ad-

mitting propagation of Alfvén modes with zero amplitude error; cf. [32] for a discussion. By

casting the induction equation in terms of the Euler potentials, the only unknown at tn+1 on

the rhs of (34) is the pressure pn+1, which is obtained by solving (to a round-off error [25, 33])

the discrete elliptic equation generated by the incompressibility (3) discretized consistently

with the divergence operator implied by A; see [26] and references therein. When present,

the viscous term in Rn+1

i is typically approximated to first-order as ∇2vn+1 = ∇2vn+O(δt),

and included into the explicit counterpart Ψ̂i of the template algorithm (34). While this

effects in the first-order Euler-forward integral of the viscous forcing in the ode dΨ/dt = R

underlying (33) [32], it is physically inconsequential in our problem, since the analytical

requirement for the formation of current sheets is zero resistivity which we approximate by

relying on high-resolution properties of MPDATA.

The thinness of developing CSs in every numerical experiment is limited by the grid

resolution. In the case of advection of EPs, the CSs are expected to form through contortions

of the flux surfaces which eventually produce spatial scales that fall below the fixed grid-

resolution. Consequently the MPDATA generated residual magnetic diffusivity breaks the

flux-freezing, resulting in reconnection of field lines across the developed CSs; effectively
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providing a termination point for the simulations since the identity of flux surfaces to fluid

surfaces are preserved only in presence of the frozen-in condition.

IV. RESULTS AND DISCUSSIONS

The simulations are carried out with zero initial velocity, on the 128× 128× 256 grid in

x, y, and z. Also we provide computational results for two different viscosities µ1 = 0.0075

and µ2 = 0.0085, for each s0.

To obtain an overall understanding of the simulated viscous relaxation, in figure 4 we have

plotted the magnetic and kinetic energies normalized to the initial total energy (kinetic

+ magnetic). The solid and dashed lines in the figures represent evolution with µ1 and

µ2 respectively. The kinetic energy curves show a sharp rise as the initial Lorentz force

pushes the magnetofluid and drives flow at the expanse of magnetic energy. This increase

in fluid velocity is arrested by viscosity resulting in the peaks of kinetic energy appearing

near t = 12s. Subsequently, the magnetofluid relaxes to a quasi-steady phase marked from

t = 64s to t = 144s as the magnetic field is depleted of its free energy. This quasi-steady

phase is characterized by an almost constant kinetic energy while the change in magnetic

energy is restricted to ≈ 20% of its total variation. The higher amplitude of the peak kinetic

energy for s0 = 3 compared to that of s0 = 2, for both µ1 and µ2, is in agreement with the

understanding that the initial Lorentz force increases with s0 (figure 1).

The formation of CSs are indicative from figures 5(a) and 5(b) which depict a tendency

of rise in volume averaged and maximum total current densities denoted as <| J |> and

| J |max respectively. To explain the observed non-monotonic rise of <| J |> and | J |max, in

figures 5(c), 5(d) and 5(e) we display evolution of the component current densities <| J1 |>,
<| J2 |> and <| J3 |> where

Ji =
c

4π
∇×Hi (35)

and,

J =
3∑

i=1

Ji . (36)
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for viscosities µ1 (solid line) and µ2 (dashed line). Noteworthy is the monotonic increase

of all component current densities with time, which attributes the lack of monotonicity in

evolution of <| J |> and | J |max to the possibility of component current densities becoming

anti-parallel to each other. Figures 6(a) to 6(c) depict the relevant cross terms Ji · Jj

becoming negative in accordance with the above understanding. The plots confirm that

till t = 24s the averages < J1 · J2 >, < J1 · J3 > are almost zero while < J2 · J3 > is

positive and increases with time. Whereas after t = 24s, < J1 ·J2 > and < J1 ·J3 > become

negative and start decreasing. These negative contributions to the magnitude of total volume

current density arrests the monotonic rise resulting in formation of the corresponding peaks

in <| J |> and | J |max at t = 32s and t = 96s. Subsequently, from t = 120s onwards the

negative contributions from< J1·J2 > and < J1·J3 > are superseded by other monotonically

increasing positive terms – < J2 · J3 > , < | J
1
|>, <| J2 |>, and <| J3 |>; resulting in

an increase of the maximum and average of total volume current density. The monotonic

increase of all the component current densities are in general conformity to formation of CSs

in component fields.

To verify computational accuracy, in figure 7 we have plotted the energy budgets for nor-

malized kinetic (solid line) and magnetic (dashed line) energies by calculating the numerical

deviations in computed energy balance equations from their analytically correct expressions

given by equations (6)-(7) for µ = µ1. The plots show the maintenance of this numerical

accuracy to be almost precise with a small deviation in kinetic energy balance at t = 12s

from its analytically correct value of zero. Noteworthy is the almost accurate maintenance

of magnetic energy balance which excludes any possibility of artificially induced magnetic

reconnection. From t = 144s onwards the deviations in both magnetic and kinetic energy

balance become high and are of the same order. This large deviation in magnetic energy

balance points to possible magnetic reconnections mediated via the residual dissipation gen-

erated in response to the under-resolved scales. As a consequence, the magnetic topology

changes and the EP representation loses its validity since the post-reconnection field lines

lye on a different set of EP surfaces. An appreciable numerical deviation in energy budget

(for both magnetic and kinetic) after t = 144s (figure 7) then provides a natural termination

point for the set of simulations presented here.

To complete the overall understanding, in figure 5(f) we have plotted the normalized

Lorentz force for µ1 and µ2. The plot shows an initial decrease followed by a quasi-steady
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phase till t = 120s. Subsequently the Lorentz force increases rapidly while being concurrent

with the sharp rise in the maximum volume current density.

From the above discussions then the following general picture emerges. The initial Lorentz

force pushes the magnetofluid and generates flow by converting magnetic energy into kinetic

energy. The monotonic increase in component current densities are supportive to the possi-

bility of CS formation till a threshold in gradient ofH is achieved. In numerical computations

presented here, the threshold gradient of developing CSs are provided by the fixed grid reso-

lutions below which the CSs decay through the magnetic reconnection. The plots also show

that for a magnetofluid with higher viscosity the CS formation is delayed in time which is

in accordance with the general expectation.

Towards a confirmation of CS formation, in figure 8 we display the Direct Volume Ren-

dering (DVR) of | J | for computation with viscosity µ2. The DVR confirms that with

a progress in time, the | J | becomes more two-dimensional in appearance from its initial

three-dimensional structure. Further insight is obtained from the time sequence of magnetic

nulls depicted in figure 9 overlaid with a selected isosurface of | J |max having an isovalue

which is 30% of its maximum value. Hereafter, we refer this isosurface as J − 30. The

appearance of this surface near t = 96s followed by its spatial extension with time while

being concurrent with the increase in | J |max, is a tell-telling sign of CS formation. An

important property of this J −30 surface is in its appearance at spatial locations away from

the magnetic nulls. The above finding is further validated by considering other isovalues of

| J |max but not presented here to minimize the number of figures. This is a key finding

of this work since the appearance of CSs away from the magnetic null has already been

apprehended by the optical analogy proposed by Parker.

To arrive at a detail understanding of the above finding, in the following we inspect

the evolution of EPs along with their corresponding component current densities. For the

purpose, in figures 10, 12, and 13 we have displayed the time sequence of EP surfaces:

φ1 = 0.25,−0.25; ψ2 = 0.85,−0.85; and φ2 = −0.40 overlaid with selected isosurfaces of

| J1 | and | J2 | using the nomenclature J1 − 60 and J2 − 60 respectively. Since J1, J2

and J3 are components of J, so the appearance of J1 − 60 and J2 − 60 surfaces (along with

J3 − 60 surface) contribute to the development of the J − 30 surface. Considering these

contributions along with those from the cross terms in | J |, we have chosen the optimal

isovalues for the component current densities to be of 60% of | J |max. Figure 10 clarifies the
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important finding that the appearance of J1−60 surface around t = 96s is due to contortion

of the φ1 Euler surface. In addition, the J1 − 60 surface is concurrent in time sequence with

the development of the J − 30 surface. Further, the two sets of surfaces are co-located in

the computational domain and have similar structures. This structural similarity along with

concurrent and co-located appearance of J − 30 and J1 − 60 surfaces ascertain that most

of the contribution in J − 30 is from J1 − 60. This is in conformity with the observation

that the rate of increase of | J1 | is substantially higher than the the same for the other two

component current densities. We also note that the contortions of the φ1 Euler surface are

spread over the whole MFS and not localized near the intersections with the corresponding

O-type neutral line. The cumulative effect of this spread in contortion along with the major

contribution of | J | coming from | J1 | then culminates into generating CSs in total volume

current density that are away from the magnetic nulls.

Further, in figure 11 we present plots of the φ1 Euler surface overlaid with the isosurfaces

of | H1 |. The panels a and b correspond to instants t = 48s and t = 128s respectively. The

isovalue for the | H1 | isosurfaces is chosen to be of 90% of its maximum value at a given

instant. As the φ1 Euler surface contorts, oppositely directed field lines come closer resulting

in a local increase of the density of field lines and hence the | H1 |. In fact, the isovalue

for the plotted | H1 | isosurface at t = 128s is almost 3.5 times larger than the same at

t = 48s. A comparison between the two panels clearly shows a reduction in intersections of

the | H1 | isosurfaces with the φ1 Euler surface as it gets more contorted. This reduction in

intersections of the two isosurfaces with a concurrent increase of local | H1 | then supports

the general understanding that the φ1 Euler surface is more contorted at t = 128s to avoid

the zone characterized by an intense | H1 | — a concept essential to the Parker’s optical

analogy.

The other two component current densities, namely the | J2 | and | J3 |, also owe

their increase to favorable contortions of the corresponding flux surfaces. Because of such

contortions, two sets of J2 − 60 surfaces lying approximately on x-constant and y-constant

planes develop as shown in figures 12 and 13. The current surface akin to the x-constant

plane is developed by squeezing out the interstitial fluid across the O-type neutral line as

displayed in figure 12. While the second current surface identifiable by its approximate

orientation similar to a y-constant plane develops from the contortions of the φ2 Euler

surfaces (figure 13) across the field reversal layer at y = π. The time delay between the
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appearance of these two sets is due to a combined effect of less contortions in the φ2 Euler

surface along with less magnitude of the corresponding component magnetic field and hence,

the related current density near the field reversal layer. Similar arguments hold true for an

emergence of J3− 60 surface, the time sequence of which can be visualized through rotating

figure 12 by π/2 along the vertical.

V. SUMMARY

In this work, we have extended our earlier studies [1, 6] to numerically demonstrate CS

formation using MFS description of a twisted initial non force-free magnetic field. For the

purpose, we have considered the magnetofluid to be incompressible, viscous and having

infinite electrical conductivity. The computational domain is of Cartesian geometry with

periodic boundaries. From Parker’s magnetostatic theorem such CS formation is unavoidable

in an equilibrium magnetofluid with interlaced magnetic field lines. To be in conformity with

the analytical requirements for generation of CSs, we have utilized a viscous relaxation to

obtain a terminal quasi-steady state which is identical in magnetic topology to the initial

non-equilibrium state. The initial magnetic field is constructed from a linear force-free field.

This construction is based on the understanding that the magnetic topology of the lfff is

complex enough in terms of interlaced magnetic field lines and the presence of 2D and 3D

nulls. In addition, the lfff is a special solution of a force-free equilibrium which is also

realizable in nature. The preservation of the initial magnetic topology is achieved by relying

on the second-order-accurate non-oscillatory advection scheme MPDATA. The originality of

this work is in its advection of MFSs for the initial non force-free twisted field. The advection

of flux surfaces provides the necessary advantage of a direct visualization of evolving flux

surfaces providing a better understanding of CS formation.

We also present both indirect and direct evidences of CS formation. The plots of the

total average current density and the total maximum current density show tendency to

increase with time but also lack monotonicity. We attribute this lack of monotonicity to the

flipping of directions in component current densities relative to each other. Realizing the

vector nature of J, the observed monotonic increase in every component current density is

indicative of CSs formation. It is also found that the process of CSs formation is sensitive

to viscosity. For the same initial Lorentz force, the CSs are forming earlier in time for less
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viscous magnetofluid as is evident from all the current density plots. This is in agreement

with the physical expectation.

A key finding of this work is in its demonstration of CS formation away from the magnetic

nulls. The corresponding dynamics is explored by analyzing the evolution of MFSs. The

analysis confirms that the MFSs contort in such a way that portions of the same flux

surface having oppositely directed field lines come close to each other and thereby increase

the gradient of magnetic field. This increased gradient of magnetic field is then responsible

for the observed CS formation away from the magnetic nulls.

The computations presented in this paper provide two important insights for a complete

interpretation of CS formation in an evolving magnetofluid. First, any parameter related

only to the magnitude of volume current density (for example, | J |max and <| J |>) is not
a standalone definitive marker to conclude on the possibility of CS formation. In context to

our simulations, it is the component current densities that show a monotonic rise whereas

the | J |max and <| J |> develop intermediate peaks. This is expected since a CS formation

or the equivalent sharpening of magnetic field gradient is a quality of the vector J or H but

not its magnitude alone. Second, the CSs may also develop away from the magnetic nulls

as apprehended in the optical analogy proposed by Parker. Recognizing the importance of

MFSs in the optical analogy, computations utilizing a flux surface representation of magnetic

field can be more effective in determining the definitive process through which such CSs

develop.

In our case, we find this process to be the contortions of magnetic flux surfaces in a way

favorable to CS formation. Additionally, these contortions are found to be in general agree-

ment with Parker’s conclusion that streaming magnetic field lines exclude a region where

the amplitude of the magnetic field is intense. Such profound insights into the dynamics of

CS formation is a novelty associated with computations utilizing advections of appropriate

magnetic flux surfaces instead of the magnetic field.
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FIG. 1: Variation of magnetic energy (dotted line), magnetic helicity (dashed line) and | J×B |max

(solid line) with an increase in s0. The magnetic energy and the magnetic helicity are normalized

to their corresponding values for s0 = 1 (lfff). The plots show an increase in magnetic energy,

magnetic helicity and Lorentz force with an increase in s0.
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FIG. 2: The panel a illustrates magnetic nulls of the initial field H for s0 = 3. Panel b shows the

same for the corresponding linear force-free field characterized by s0 = 1. The figure depicts the

similarity in spatial distribution of magnetic nulls between the lfff and the initial field H.
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FIG. 3: Panel a depicts the Euler surfaces ψ1 = 1.3,−1.3 (in red); and φ1 = 0.25,−0.25 (in blue)

overlaid with magnetic field lines (in green). Panel b plots the Euler surfaces ψ2 = 0.85,−0.85 (in

red); and φ2 = 0.25 (in blue) with corresponding magnetic field lines (in green). The Euler surfaces

ψ3 = 0.85,−0.85 (in red); and φ3 = 0.25 (in blue) overlaid with field lines (in green) are shown in

panel c.
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FIG. 4: Time evolution of normalized magnetic and kinetic energies for s0 = 2 (panels a and b)

and s0 = 3 (panels c and d). Each plot is for two different viscosities µ1 = 0.0075 (solid line)

and µ2 = 0.0085 (dashed line). The energies are normalized to the initial total energy. The plots

highlight the initial peaks and the quasi-steady phase in kinetic energy. A delayed formation of

kinetic energy peak for higher viscosity is in agreement with the general understanding.
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FIG. 5: History of a: <| J |>, b: | Jmax |, c: <| J1 |>, d: <| J2 |>, e: <| J3 |> and f: grid

averaged Lorentz force, for s0 = 3 with viscosities µ1 (solid lines) and µ2 (dashed lines); normalized

with respect to their initial values. The panels a and b show a lack of monotonicity in evolution

of the average and maximum total current density whereas panels c to e depict the component

currents increases monotonically.
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FIG. 6: Time profiles of the normalized a: < J1 ·J2 >, b: < J1 ·J3 > and c: < J2 ·J3 > for s0 = 3

and viscosity µ1; plotted with solid lines. For comparison, zero lines are plotted with dash. The

normalization is done with respect to initial value of < J2 · J3 >. The plots exhibit the flipping in

direction of component current densities after t = 24s.
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FIG. 7: The history of energy budget for kinetic (solid) and magnetic (dashed) energies for s0 = 3

and viscosity µ1, normalized to the initial total energy. The plot shows an almost accurate balance

in magnetic energy and an acceptable deviation in kinetic energy balance. Both the energy balances

are lost at t = 144s onwards and provides a termination point for the simulations.
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FIG. 8: Time sequence of direct volume rending of total current density | J | for s0 = 3 with vis-

cosity µ2. The figure highlights the appearances of higher values of total current density becoming

localized and two dimensional in structure, from an initially three dimensional non-localized form.
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FIG. 9: Time evolution of magnetic nulls (in pink), overlaid with isosurface (in yellow) of total

current density having a magnitude of 30% of its maximum value (J-30). The figure illustrates

the spatial locations in computational domain where the CSs are forming. Noteworthy is the

development of CS away from the magnetic nulls where they are generally expected. Also the

topology of the initial magnetic field in terms of spatial distribution of magnetic nulls is preserved

throughout the time sequence.
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FIG. 10: Evolution of Euler surfaces φ1 = 0.25,−0.25 (in blue), overlaid with J1 − 60 surface (in

yellow). The appearance of J1 − 60 surface are co-located to a contortion of φ1 favorable to bring

two oppositely directed field lines towards each other.

30



FIG. 11: The Euler surface φ1 (in Blue) at two time instants overlaid with isosurfaces of | H1 |

(in Grey). The reduction in intersections between the two isosurfaces along with a concurrent rise

in | H1 | is in general agreement with the understanding that magnetic field lines exclude a local

region with intense magnetic field.
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FIG. 12: Evolution of Euler surfaces ψ2 = 0.85,−0.85 (in red), overlaid with J2 − 60 (in yellow).

The figure clarifies development of CSs through a squeezing of ψ2 Euler surface across the O-type

null.
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FIG. 13: Time sequence of Euler surfaces φ2 = −0.40 (in grey), overlaid with J2 − 60 (in blue).

The two Euler surfaces depicted in the figure reside on two opposite sides of the field reversal layer.

Formation of CSs (marked by arrows) through contortions of φ2 is evident from the figure. A

different color scheme in this particular figure is used for a better depiction of CS formation.
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