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Abstract

The theoretical solutions and corresponding numerical simulations of [Schér
& Smolarkiewicz, J. Comput. Phys, 128 (1996) 101]) are revisited. The orig-
inal abstract problem of a parabolic, slab-symmetric drop of shallow water
spreading under gravity is extended to three spatial dimensions, with the
initial drop defined over an elliptical compact support. An axisymmetric
drop is considered as a special case. The elliptical drop exhibits enticing
dynamics, which may appear surprising at the first glance. In contrast, the
evolution of the axisymmetric drop is qualitatively akin to the evolution of
the slab-symmetric drop and intuitively obvious. Besides being interesting
per se, the derived theoretical results provide a simple means for testing nu-
merical schemes concerned with wetting-drying areas in shallow water fows.
Reported calculations use the libmpdata++, a recently released free/libre and
open-source software library of solvers for generalized transport equations.
The numerical results closely match theoretical predictions, demonstrating
strengths of the nonoscillatory forward-in-time integrators comprising the
hibmpdata++.
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1. Introduction

The “shallow water equations” (SWE) is a popular topic in the Journal
of Computational Physics (JCP). According to the Thomson Reuters Web
of Science, nearly 300 papers on SWE have been published in JCP since
1971 (= 4% of all recorded SWE papers published since 1969), with the
accrued citation count approaching 7000 (=~ 6% of all recorded citations).
The SWE attract interdisciplinary interests, as substantiated by numerous
contributions in the areas of applied mathematics, astrophysics, environmen-
tal engineering, fluid dynamics, geophysics, meteorology and oceanography.
Apart from providing a practical long-wave approximation for PDE systems
governing, in general, continuously-stratified 3D flows [1, 2], SWE also pro-
vide a convenient testing ground for development of numerical methods and
complex models in a broad range of computational science and engineering.

The work [3] is a representative example amid those using SWE to prove
new developments. In [3] the authors addressed the compatibility of Eulerian
and Lagrangian numerical integrations of coupled transport equations, in the
context of geophysical flows. One of the computational testbeds employed to
quantify the accuracy of the proposed schemes was an idealized problem of
a 2D slab-symmetric drop of shallow water spreading under gravity. While
directly addressing the wetting-drying areas for the SWE, this problem also
epitomizes inflating-collapsing material layers in isentropic/isopycnic mod-
els for atmospheric/oceanic circulations. Technically, such models resemble
a stack of shallow water models, coupled by the hydrostacy in the vertical
direction [3, 4]. Just like in conservative integrations of SWE, diagnosing ve-
locity in material layers may require calculating ratios of the momentum and
the layer depth. Preventing this division from becoming ill-defined requires
the momentum and the layer depth to vanish compatibly; i.e., with their
ratio always being well defined, as implied by the evolutionary (Lagrangian)
form of the specific momentum equation (velocity).

Here, we extend the theoretical solutions of [3] to 3D drops with an ellip-
tical compact support, the axisymmetric case of which is described by par-
ticularly concise and elegant formulae. The theoretical results provide simple
means of quantifying the accuracy of multidimensional schemes required to
deal with wetting-drying areas and inflating-collapsing material layers. The-
oretical predictions are supplemented with numerical integrations of partial
differential SWE using the MPDATA-based nonoscillatory forward-in-time
methods, also used in [3] and widely documented in the literature; see [5]



for a recent summary. All simulations were performed using libmpdata++,
a free/libre and open-source software library of solvers for generalized trans-
port equations [6]. The corresponding theoretical and computational results
corroborate each other.

The paper is organized as follows. Section 2 presents the problem, sum-
marizes analytical derivations, and discusses theoretical results. Section 3
highlights numerical integrators and compares theoretical and computational
results. Remarks in section 4 conclude the paper.

2. Analytical results

2.1. Problem statement

Following [3], the addressed physical scenario consist of an initially stag-
nant lenticular drop of a homogeneous incompressible inviscid fluid that
spreads under gravity on the plane, in absence of friction and background
rotation.! The depth-integrated governing PDE postulate the shallow-water
(hydrostatic) approximation, physically sound when the width of the drop
significantly exceeds its height. Conforming to the formulation in [3], the
extended 2D SWE take the dimensionless form

Oih + 0, (uh) + 9y (vh) = 0, (1)
O¢(uh) 4+ 0y (uuh) + 0y(vuh) = —hdsh , (2)
0¢(vh) + 0, (uvh) + 0y(vvh) = —hd,h , (3)

where h, (u,v), (z,y) and ¢t have the usual meaning of height, velocity
components, Cartesian coordinates and time. The indicated variables are
normalized, respectively, by a characteristic height scale h,, the celerity
u, = (gho)'/? (with ¢ denoting the gravitational acceleration), a charac-
teristic width scale a, and the characteristic time scale ¢, = a/u,.

In contrast to the 1D formulation of [3] — in turn inspired by the study
of a SWE ribbon on a rotating plane [7] — our initial drop is defined over
an elliptical compact support on the xy plane

g2 y?
h(z,y,t=0) > 0 if —+ 5 <1, (4)
)\CL‘O )\yO

h(z,y,t =0) = 0 otherwise ,

'Surface tension effects are irrelevant for applications addressed in this paper.



where A\, and A\ are the major and minor semi-axes of the ellipse. Following
the earlier works [3, 7, 8], the solutions are sought to maintain parabolic
profiles in the x and y cuts, so the evolving height can be written as

2 2 .T2 2

T Y . Yy
h(ZL‘7y,t) = A()‘m)‘y)(l - F - ﬁ) if ﬁ + ﬁ <1 , (5)
x y

T Y

h(z,y,t) = 0 otherwise ,

where A, (¢) and A,(t) depend solely on time, while the actual height of the
drop at the origin A(A;,\,) > 0 V t < oco. The theoretical results for the
general case of (5) will be presented next, whereas the special axisymmetric
case, A\, = A, V ¢, will be presented in section 2.3.

2.2. FElliptical drops

Along the y = 0 and x = 0 symmetry axes the solution is expected to
retain the key functional dependencies of the 1D case [3]. Consequently,
we postulate A(A;, A,) = AJAY in (5), where the exponent n < 0 is yet to
be determined. Furthermore, it is also assumed that the velocities change
linearly across the drop and satisty u(\,,t) = d\,/dt = A, and v(\,,t) =
dX,/dt = }\y at the x and y edges of the drop, respectively. The simplest
form that fulfills these requirements is the irrotational flow

wet) =235 o) =u3 (©
After inserting (5) and (6) in (1), the result shows that the mass continuity
equation is satisfied only if n = —1; i.e. A(A;, \y) = 1/(A\A,). Further-
more, inserting the postulated forms for w(z,t), v(z,t) and h(z,y,t) into
(2), (3) and manipulating the algebra, reveals the autonomous system of two
nonlinear second-order ODEs

2 . 2

)\%)\y ’ Y <7>

Ae
A2

Introducing two auxiliary variables 3, = A, and By = }\y allows to rewrite (7)
as a system of four first-order ODEs that can be numerically integrated with
high precision using, e.g., an implementation of the LSODA method from the
ODEPACK library; see [9] for the method description. Such semi-analytical
solutions to the SWE (1)-(3) are presented in Fig. 1.
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time time

Figure 1: Left, the history of semi-axes A;, A, (solid lines) and their respective spreading
rates Ay, Ay (dashed lines). Right, the long-time history of the ratios A, /A, and A, /A;.

The left panel of Fig. 1 documents the evolution of the semi-axes (A;, A,)
and their respective spreading rates ()\x, )\y) starting from the initial values
(Az0 = 2, Ayo = 1) at rest. Both axes increase with time, but as a consequence
of their second-derivative forms (7), the initially minor axis A, increases faster
than the major axis A,, and this leads to the equalization of axes at ¢=3.
The circular shape is, however, transient since the velocities of the ellipse’s
edges in both directions are different, and the initially minor and major axes
swap their roles. Furthermore, Fig. 1 shows that the velocities tend to their
asymptotic values relatively fast, while the axes increase linearly, so the shape
of the ellipse with swapped axes is preserved. For completeness, the right
panel of Fig. 1 shows the asymptotic behaviors of the ratio of axes and their
spreading rates (note fivefold time compared to the left panel). Noteworthy,
although the ratios \,/\, and Ao/ ')'\y cross unity (recall egs. 7), the ratio
Az/A, does not.

Further theoretical estimates for the drop geometry in function of time
can be inferred from the energy considerations. We begin with the differential

relations for the potential and kinetic energies — cf. section 3.6.2 in [10] —
of the SWE (1)-(3)

dEpot h(l’,y) dm ) (8>

dEgn 9)

N =N =

(u(x)2 + v(y)Q) dm ,
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Figure 2: History of the LHS (solid lines) and RHS (circles) of (14) for two initial conditions
Azo = 2 (green) and Ayo = 3 (blue) with Ayo =1 in both cases.

where
1 1'2 y2
dm = h(z,y) dedy = .Y 1- pei /\_Z dzdy , (10)

denotes the mass in the column with height h(x,y) and infinitesimal horizon-
tal area. Integrating the resulting expressions over the volume of the drop,
leads to the following result (see Appendix A)

m 1
E,n = —= , 11
pot 6 >\x ” ( )
e . .
The energy conservation for the case at hand
Epot + Ekin = pot(t = O) ; (13>
together with (11) and (12), implies
. . 1 1
)+ (Ay)? =14 — 14
( ) + ( y) <)\x0)\y0 )\x)\y) ( )

that is consistent with (7).2

Differentiating (14) with respect to time, and using (7) on the LHS results in the
identity.



The relation (14) verifies the semi-analytical results from the integrations
using the ODEPACK library. Figure 2 presents both sides of (14) — marking
left- and right-hand side with solid lines and circles, respectively — for two
initial conditions \;o = 2 and A,y = 3 with the fixed A\;y = 1. Indeed, both
sides of the equation match each other closely tending to the asymptotic
value 4/(Ay0Ay0), 1.e. to 2 and 4/3 for the two presented cases.

2.3. Azisymmetric drops

For the special case of A, = Ay = A V ¢, the solution for general case of
(5) and (6), takes a simpler form

1 %+ y?
h(l’,y,t) = F (1 - 22 ) (15>
A A
t) = x— t) =y~ 16
u(et) = a3, vl =y (16)
whereas the second derivative expressions (7) reduce to
.2

It can be shown that these equations satisfy (1)-(3). Because the dependence
of the second derivative (17) on A is much simpler than for general case, the
complete analytical solution can be easily derived.

Defining an auxiliary variable B(A) = A, (17) can be rewritten as

« dp.  dp _1d(ﬁ2) 2
TR Ty e (18)
Integrating the last equality in (18) for 32 leads to
9 t
21t _ 4
B |t0 Y w ) (19)

while accounting for the initial conditions produces®

) = B(t) = \/2 (Ai% - ﬁ) | (20)

3The same relation can be obtained from (14), if A, and A, are substituted for \.

7



Manipulating the algebra and integrating (20) gives the closed-form solution

for drop radius evolution
A(t) = /212 + N2 (21)

Finally, inserting (21) to (15) and (16) straightforwardly leads to closed-form
solutions for the actual height of, and the velocity field within the drop.
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Figure 3: History of axisymmetric drop radius, A, (red solid line) and its corresponding
spreading rate, \, (red dashed lines). The lines present a semi-analytical solution obtained
from solving (7) using ODEPACK for axisymmetric initial condition Azg = Ayo = 1. The
dots indicate a closed-form analytical solution obtained from (21). The green lines present
time evolutions of axes (solid lines) and their corresponding spreading rates (dashed lines)
for elliptical drop with the same initial energy as for the axisymmetric drop (A;0 = 2 and

Ayo = 0.5).

Figure 3 presents two solutions for the axisymmetric drop with the initial
radius Ay = 1. Red lines present the results using numerical ODEPACK
integrations, as it was done for the elliptic case, with solid and dashed lines
marking A and A, respectively. Red circles indicate the closed-form analytical
solutions. For comparison, green lines present results for elliptic drop with
Ao = 2 and Ay = 1/2; ie., with the same potential energy as for the

axisymmetric drop.
The next section compares the theoretical predictions with numerical sim-

ulations of partial-differential SWE (1)-(3).
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3. Numerical results

3.1. Approach

Numerical integrations of the governing PDEs (1)-(3) presented in this
paper employ the libmpdata++ — a collection of parallel numerical algo-
rithms for solving generalized inhomogeneous advection transport equations.
The libmpdata++ has been recently released as free/libre open-source soft-
ware library and is available at http://libmpdataxx.igf.fuw.edu.pl/ .
The implementation concepts, the library documentation, and a range of ex-
amples can be found in [6]. The algorithms in the libmpdata++ implement
MPDATA (for multidimensional positive-definite advection transport algo-
rithm) — a class of nonoscillatory forward-in-time flux-form schemes already
well reviewed in the literature, see [11, 12, 5] and references therein.* The nu-
merical simulations presented in this paper use exclusively the second-order
accurate fct+iga+dfl+trapez option of libmpdata++ with the vip_eps set
arbitrarily to 10~7. That is, the monotonicity preserving infinite-gauge op-
tion of MPDATA for elastic/compressible flows, with the trapezoidal integral
of the RHS in the momentum equations and the residual depth of the fluid set
to 1077 while evaluating the velocity components from momenta and depth;
see sections 5.3, 5.4 in [6].

In algorithmic terms, the approach specified above can be compactly
written as

h;’b-i-l _ Az (hn7vn+1/2> ’ (22)
@M = A (G, VITYE) = 0.50t(hO,h) [T (23)
gl = Ai (g, V"Y?) — 0.56t(hO,h) 1T (24)

where 7 marks the nodes of a co-located regular grid, n = 0, 1, 2, .. denotes the
temporal level, and A symbolizes the advective transport operator; here, the
MPDATA advection scheme. The depth of the fluid & and momentum vector
q = (¢s, qy) are the dependent variables defined initially and evolved with the
algorithmic relations (22)-(24). The velocity VI — calculated as VI = g7 /Al
if A" > ¢, and VI = 0 otherwise (here, ¢ = 1077) — is extrapolated linearly

AMPDATA is iterative in nature. Each iteration is a simple upwind scheme that is
conservative, sign-preserving and free of directional splitting, but only first-order accurate.
Subsequent iterations compensate the leading errors of the preceding iterations using a
pseudo-velocity field derived from truncation errors of upwind differencing.
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from its "' = (n — 1)dt and t" = nét values to t"*/2 and interpolated
linearly to the cell-walls encompassing the node i, to provide the advecting
velocity field V*+1/2 for MPDATA. The advecting velocity is the same for all
advected variables; i.e., h and the auxiliary momenta q = q™ — 0.56t(hVh)".
Given a second-order-accurate A and smooth data, the resulting integrator
in (22)-(24) provides second-order-accurate solutions for the SWE (1)-(3);
see section 4.1 in [4] for a demonstration.

3.2. Solutions

Figures 4 and 5 highlight the numerical results obtained by using [lib-
mpdata++ for the spreading elliptical drop,® corresponding to the theoretical
solutions discussed in section 2.2. The parameters of the reference simula-
tion are as follows. The time step is set to 6t = 0.01 and the gridsize to
0x = oy = 0.05. The computational domain consist of 400 x 400 grid cells.
The initial conditions assume zero velocity and (Ao = 2, A\yo = 1). Figure 4
shows the height of the drop at the times: t = 0,1, 3,7, with superimposed
velocity vectors. Figure 5 shows the corresponding velocity field, (u?+v?)'/2
at t =3 and 7.

Figure 4 documents that the initially minor axis )\, increases faster than
the major axis A,. In consequence, at t = 3, the two axes nearly equal each
other, and at later times A\, becomes a major axis. Figure 5 corroborates
this result, showing that at ¢ = 3 the spreading rate Xy is larger than the
spreading rate Az In fact, the }\y > ), for the entire simulation, consistent
with the semi-analytical results of section 2.2.

Figure 6 complements Figs. 4 and 5 with the display of the cuts along the
two main axes of the elliptical drop. As illustrated in the figures, the model
results are free of any apparent oscillations near the drop edge and are in
good agreement with analytical results.

To provide quantitative measure of the model accuracy, Table 1 lists
norms of the leading truncation errors at ¢ = 7 for the reference simulation
supplemented with coarsened and refined calculations. The error norms are
defined as follows

I 6h e = e () (25)

max (han (t = 0)>

>The solution for the axisymmetric drop is analyzed in sec. 5.4 of [6].
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Figure 4: Height of the drop with superimposed velocity vectors, projected on the xy plane,
at t = 0,1,3 and 7; contour intervals are evenly spaced between 0 and the maximum values
0.50, 0.31, 0.09 and 0.02 for t =0, 1,3 and 7, respectively.

Figure 5: As in Fig. 4 but for the total velocity at t = 3 and ¢ = 7; the contours are drawn
with seven 0.16 intervals between 0 and 1.12.
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Figure 6: The model and theoretical results in the x and y cuts for ¢ = 1,3 and 7.
Solid and dashed lines represent, respectively, the height and the velocity component
tangential to the cut. The initial condition is plotted in black, analytical solution in blue
and numerical results in red; for the height, the analytical and numerical solutions are
hardly distinguishable.

1|1«
oh = -\ = P — han)? 26
ol = 543 3 ) (26)
where hpyum and h,, denote, respectively, the model results and the corre-
sponding theoretical solutions in N gridpoints (z;,¥;) at an instant ¢t. While
(25) measures the maximal solution error accumulated over time ¢, (26) is a
measure of the truncation error in approximating the PDE. The table doc-

uments first-order convergence in the both norms — similar result has been
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obtained for the total velocity (not shown). The first-order convergence is
adequate since the solution lacks smootheness at the drop edge, Fig. 6. In-
deed, Fig. 7 confirms that the truncation error is concentrated at the edge.
Furthermore, Table 2 documents that the error decreases with time, which
is consistent with Fig. 6 that implies diminishing discontinuity of spatial
derivatives of h at the edge as the drop spreads.

6z /6t | 0.1/0.02]0.05/0.01|0.025 / 0.005 | 0.0125 / 0.0025
| 6h [line | 388¢e3 | 1.85e¢3 | 084e3 | 0383
[6h]ly | 424e5 | 147e5 | 059e5 | 0.26e-5

Table 1: The convergence of the error norms (25) and (26) at t = 7. The third column
corresponds to the reference simulation with dz = 0.05 and d¢t = 0.01.

Figure 7: The field of truncation error |hnym — han|/ max (han(t = 0)) for the reference

simulation at ¢ = 7. The contours are drawn with three evenly spaced intervals between 0
and 2 e-3.

¢t |1 | 3 | 7
| 6h [[ing | 3-61 -2 [ 0.82 ¢-2 | 0.18 -2
| 6h (]2 | 1.05 e-3 ] 0.10 e-3 | 0.01 e-3

Table 2: The error norms (25) and (26) for the reference simulation at t = 1,3 and 7.
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4. Remarks

We presented the enticing abstract problem of a 3D parabolic drop, with
a compact elliptical support, spreading under gravity on the plane. Math-
ematically, the drop evolution is described by the shallow water equations
(SWE), and this paper extends its 2D case introduced in [3]. Here, the rel-
evant theoretical solutions of SWE are derived and analyzed, including the
compact closed-form analytical solution for the axisymmetric case. Interest-
ing evolution of the elliptical drop — swapping the initially major and minor
axis — is discussed in detail. This peculiar behavior owes to the initial condi-
tion that induces larger spreading rates at the steeper slopes in the direction
of the minor axis.

The process is accurately reproduced in direct numerical simulation of
SWE using the libmpdata++ — an open-source software library of nonoscilla-
tory forward-in-time solvers for generalized advective transport equations [6].
From the numerical perspective, the presented problem epitomizes inflating-
collapsing material layers in isentropic/isopycnic models for atmospheric/oceanic
circulations and the evolution of wetting-drying areas in SWE. Consequently,
our theoretical solutions provide a convenient testbed for development of rel-
evant numerical methods. In particular, the paper shows that a relatively
straightforward implementation of standard monotonicity preserving advec-
tion schemes — as described in (22)-(24) — suffices for accurate simulation
of wetting-drying areas and, thus, inflating-collapsing material layers [4].

The source code used to obtain the results presented in the paper is freely
available at the project repository.® It allows to reproduce the analyses and
plots presented in sections 2 and 3.
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Appendix A. Potential and kinetic energy of elliptical drops

Here we outline the steps leading to the results (11) and (12) obtained in
section 2.2.
First, inserting (10) into (8) leads to

11 22y’
5)\%)\5 (1_ﬁ+)\2) dzdy . (A.1)

dEpot =

In order to calculate the total potential energy, (A.1) needs to be integrated
over the total surface of the drop. For one quadrant of the drop, this is
equivalent to integrating over dz from 0 t0 Zegge = Ao/ Ay /A2 — y?, and over
dy from 0 to A,. Because the potential energy is the same for each quadrant,
the latter leads to the total potential energy

Tedge 1 1 72 y2 2
pot_4/ / 3 < St A2) dady . (A.2)

Calculating the integrals in (A.2) and manipulating the algebra leads to result
(11) in section 2.2.
Second, inserting (10) into (9) gives

2 2 2
2x 2y z Y
X x Yy

Because ), and }\y do not depend on spatial coordinates, the integration over
the entire domain results in

2 >‘y xedge .:1:2 y2

/\y Tedge 2 2
S Y T )
202 = - — dxd
" y/o /0 )‘5)‘96)‘1/( /\2+)‘2) o

Calculating all integrals in (A.5) gives the relation for total kinetic energy
(12) in section 2.2.
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