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Abstract

Requiring that numerical estimates of the flow trajectories comply with the funda-
mental Euler expansion formula that governs the evolution of a volume of fluid leads
to a second-order nonlinear Monge-Ampère partial differential equation (MAE). In
[Cossette and Smolarkiewicz, Comput Fluids 46, 180 (2011); CS11], a numerical
algorithm based on solving the MAE with an inexact Newton-Krylov solver has
been developped and used to correct standard estimates of the departure points of
flow trajectories provided by a classical semi-Lagrangian scheme in the context of
an incompressible fluid. Here we extend the theoretical analysis of the elemental ro-
tational and deformational motions presented in [CS11]. In particular, closed-form
analytic solutions are derived for both cases that serve to illustrate the mechanics of
the enhanced trajectory scheme and to address the issues of existence and unique-
ness. Scalar advection shows that the MA correction improves mass conservation
substantially by suppressing anomalous fluid contraction. The impact of the MA
correction on complex flows is studied in the framework of an ideal magneto-fluid
in which the formation of current sheets leads to topological changes and reconnec-
tion of field lines. The use of the MA correction improves the numerical stability of
the solutions and prevents trajectory intersections as well as the spurious growth
of the magnetic energy. 2D and 3D examples are presented and the computational
performance of the solver is documented.
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1 INTRODUCTION

Discretizing analytical fluid PDEs into a form that is amenable to numerical
integration has to take into account the key aspects of stability, consistency,
accuracy and efficiency. Depending upon the physical application and the aim
of the user, specific features that are inherent to the analytical model may
or may not be incorporated into the architecture of the numerical algorithm.
Such properties are, for instance, conservation laws, monotonicity, positive-
definiteness of the scheme, total-variation diminishing constraints, or some
form of compatibility [54]. In the brief proceedings paper [15], the Monge-
Ampère (hereafter, MA) trajectory correction for semi-Lagrangian (SL) inte-
gration schemes was introduced as a means to enforce a type of compatibility
based on the Lagrangian form of the mass continuity equation in the context
of incompressible fluids. The execution of the MA correction requires solv-
ing a diagnostic nonlinear second-order PDE, the Monge-Ampère equation
(MAE), to some approximation at each model time step. To interpret the MA
correction in physical terms, we developed in [15] its theoretical analysis for
elemental rotational and deformational motions. Here, we extend this analysis
by providing closed-form analytic solutions for both elemental flows. These so-
lutions illustrate the mechanics of the trajectory corrections and substantiate
the arguments on the solution existence and uniqueness. The impact of the
enhancement on scalar advection is revisited and its performance in the con-
text of complex flows is assessed using a problem of relaxation to equilibrium
in the ideal classical magnetohydrodynamical (MHD) approximation. What
follows briefly summarizes the framework of SL methods before introducing
the MA correction.

SL discretization schemes arise from a path integration

ψ(x, t) = ψ(x0, t0) +
∫

T
Rd t (1)

of a Lagrangian evolution equation

d ψ

d t
= R , (2)

in which d/dt denotes the total derivative along the flow trajectory T : (x0, t0) →
(xi, t), ψ is an arbitrary intensive fluid variable (e.g., temperature, chemical
concentration or velocity component), and R symbolizes the associated right-
hand-side (e.g., heat sources, chemical reactions, or pressure gradient force,
respectively). Assuming the availability of ψ at all grid points xi at the in-
stant t0, advancing the solution to t = t0 + ∆t invokes three distinct steps.

∗ Corresponding Author.
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First, trajectories arriving at the grid points xi at t are evaluated backward
by approximating the path integral

x0 = xi −
∫ t

t0
v(x(τ), τ) d τ , (3)

of the kinematic relation dx/dt = v. Second, the advected dependent variable
ψ(xi, t0) is mapped to the set of the departure points ψ(xi, t0) → ψ(x0, t0) by
means of interpolation. Third, contributions from forcings are accounted for
as integrals along the trajectories [70,62,24,58,61].

SL methods are widely acknowledged for being superior in computational ef-
ficiency and stability relative to Eulerian schemes since they are not subject
to the CFL condition. A major drawback of the classical SL approach is its
lack of mass conservation, although improvements exist and are still being ex-
plored [69,72,60,39]. Many applications of SL schemes are found in numerical
weather prediction (e.g. see [60] and references therein) and in the modelling
of plasma dynamics, e.g. [42,28].

Intimately linked to the Lagrangian formulation of fluid mechanics is the in-
terpretion of flows in terms of a space-time continuum, where the volume of
fluid elements evolves in accordance with the Euler expansion formula

d ln J

dt
= ∇ · v , (4)

with J := det(∂x/∂x0) denoting the flow Jacobian [12,67]. The flow Jacobian
has the interpretation of the ratio of final (evolved) to initial infinitesimal fluid
parcel volumes (e.g. see [38], chapter I.14). Together with the evolutionary
form of the mass continuity equation

d ρ

d t
= −ρ∇ · v , (5)

the Euler formula (4) constitutes the base of the Lagrangian form of the mass
conservation law

ρ(xi, t) = Ĵρ(x0, t0), (6)

where Ĵ ≡ J−1 = det(∂x0/∂x) is the inverse flow Jacobian [46]. Consequently,
truncation errors in the evaluation of the departure points induce errors in the
flow Jacobian, and so the compatibility of discrete counterparts of the integrals
(1) and (3) with (6) is not ensured. This contrasts with Eulerian finite-volume
methods, in which advecting velocities most often comply with the discrete
mass continuity. In particular, for incompressible fluids the volume of each
fluid element remains constant, upon which the relation

Ĵ = 1 (7)
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becomes a necessary condition for the scheme’s compatibility. We wish to
emphasize that (7) alone is not sufficient to ensure the compatibility since it
does not take into account the remapping step, which also participates in the
numerical realization of (6). To the authors’ knowledge, the extent to which
both aspects affect the flow physics remains an open question. In this paper,
we shall focus on the Lagrangian aspect of the compatibility, namely (7), and
examine the impact of incompatible integrations on the observed flow features.

Specifically, we will enforce (7), by correcting the estimated departure points
x̃0 according to (x̃0)C = x̃0 + (t − t0)∇φ, with (x̃0)C denoting the corrected
departure points. The potential φ satisfies the PDE implied by

det




∂(x̃0)C
∂x



 = 1 , (8)

which happens to be a form of MAE. The latter appears in the fields of mathe-
matical physics [13,25,6,16], differential geometry [49], image registration [33],
grid generation [63,10,21], fluid dynamics [11,17,18,22,2], magnetohydrody-
namics [71] and cosmology [73]. Seminal work on the MAE goes back to Monge
[45], who first posed the problem of optimal mass transport. Questions of exis-
tence and uniqueness of solutions to the MAE has been addressed in numerous
works, e.g. [43,32,8]. In general the MAE can have more than one solution,
and convexity of the solution becomes a necessary condition for uniqueness. In
cases where the MAE is solved numerically, convexity can either be enforced
through the problem discretization or by the design of the numerical solver
[27,4].

The paper is organised as follows: In section 2 we focus on the 2D case of
(8) and study the impact of the MA trajectory correction on the anomalous
fluid motions that result from numerical approximations. Toward this goal,
we use examples of pure rotation and pure deformation to find closed-form
solutions to the associated MAEs that help assessing questions of existence
and uniqueness of their implied corrections. Section 3 introduces the numerical
framework of the MHD flow solver and MA-enhanced trajectory algorithm to
be used in the experiments in sections 4 and 5. Section 4 illustrates the effect
of the enhanced SL scheme on scalar advection and mass conservation. In
section 5 we consider the relaxation of an ideal magnetofluid in 2D and 3D
periodic domains, wherein the formation of current sheets leads to changes
of the magnetic field’s topology. Section 6 summarizes the main results and
concludes the paper.
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2 The Monge-Ampère correction

2.1 Preliminaries

A wide class of ODE-like discretizations of the trajectory integral (3) arise as
particular cases of the general linear formula (2.4.22) in [31], the two-point
subcase of which is particularly relevant to our SL scheme approximation
considered here and can be written as

x̃0 = xi −∆t Φ(t0, t; x̃0,xi) , (9)

with t = t0 +∆t and

Φ = c0 v(t0, x̃0) + c v(t,xi) ≡ ṽ . (10)

Here, the weights c + c0 = 1, together with the algorithm used to solve the
implicit system of nonlinear equations (9) for the unknowns x̃0, determine the
form of the discrete integral, whereupon ṽ is identifiable with a path-mean
velocity.

From (4), it can be seen that the vortical part of the velocity does not induce
any change in the volume of a fluid element. Consequently, this motivates
a correction to the estimated velocities in (10) as the gradient of a scalar
potential, so that (9) results in

(x̃0)C = xi −∆t
(
ṽ −∇φ

)
. (11)

Notably, the estimated velocity ṽ constructed from fields that satisfy the Eu-
lerian form of the mass-continuity equation (5) on the grid does not ensure
(6). In particular, the compatibility of (1) and (3) with (6) demands that both
Eulerian and Lagrangian forms of the mass continuity equation be fullfilled
simultaneously. For an incompressible fluid, this requires that both the prog-
nostic velocity field v, which is used to construct ṽ, satisfies (5) and that
(11) satisfies (8). Therefore, (11) has the interpretation of a path integrated
implicit pressure correction to the explicit estimate of ṽ.

Focusing, hereafter, the attention on incompressible flows, the enforcement of
the compatibility of (11) with (6) amounts to substituting (11) in (8). This
leads readily to a MA equation for the potential φ. For simplicity we discuss
the 2D case considered in section IV.6.3 of [16]. For any ∆t > 0, the resulting
MAE can be written compactly as

Aφxx + 2Bφxy + Cφyy + E(φxxφyy − φ2
xy) +D = 0 , (12)

where subscripts x and y denote the respective partial differentiations. Given
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(11), the coefficients of (12) depend only on partial derivatives of ṽ = (ũ, ṽ),
such that

A=1−∆tṽy
B=1/2 ∆t(ũy + ṽx)
C =1−∆tũx
D=−ũx − ṽy −∆t(ũyṽx − ũxṽy)
E=∆t . (13)

Solutions to (12) fall into either one of two categories given the discriminant

Λ ≡ AC −B2 −DE > 0 , (14)

everywhere inside the domain Ω. Solutions of the first type obey the inequal-
ities

Eφxx + C > 0 , Eφyy + A > 0 ; (15)

whereas, those of the second type satisfy

Eφxx + C < 0 , Eφyy + A < 0 , (16)

which are refered to as the type-1 and type-2 solutions, respectively [16]. In
particular, the MAE (12) is elliptic if and only if both (14) and (15) are
fullfilled, which is necessary to ensure the uniqueness of solutions to (12).
Importantly, the Lipschitz conditon

L ≡ ∆tmax
i

(∑

i,j

|vi,j |
)
< 1 , (17)

which assures non-intersection of the estimated flow trajectories (9) guarantees
(14). Here, the superscript i identifies a component of the velocity vector and
the subscript j refers to spatial differentiation [58]. We refer the reader to
appendices A and B for further discussion on the existence and unicity of
both types of solutions.

2.2 Elemental flows; closed-form solutions.

To develop an intuition for properties of (12) in terms of fluid flow, we examine
some of its solutions in the context of the Euler-forward approximation for
(9) (i.e. c0=0 and c = 1 in (10)) applied to the elemental incompressible
pure-rotational vR = α(−y, x) and pure-deformational vD = α(y, x) flows,
where α = 1s−1 denotes the flow’s amplitude — see fig.1. Accordingly, the
tensors of rotation Ωik = 1/2 (∂ui/∂xk − ∂uk/∂xi) and the strain rate Dik =
1/2 (∂ui/∂xk +∂uk/∂xi) have the constant entries (Ω12 = −Ω21 = −α, Ω11 =
Ω22 = 0, D ≡ 0) for vR and (D12 = D21 = α, D11 = D22 = 0, Ω ≡ 0) for vD.
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Fig. 1. Examples of incompressible, pure-rotational (left) and pure-deformational
flows (right) vR and vD.

MAEs associated with vR and vD are given by, respectively,

φxx + φyy +∆t(φxxφyy − φ2
xy) + α2∆t = 0 (18)

and

φxx + 2α∆tφxy + φyy +∆t(φxxφyy − φ2
xy)− α2∆t = 0 . (19)

2.2.1 Pure rotation

One can exploit the rotational symmetry of vR to find solutions to (18) of the
form φ(x, y) = F (ξ) ≡ F (x2 + y2). Substituting F into (18) and using the
chain rule yields the second order nonlinear ODE

4Fξ(1 + ∆tFξ) + 4ξFξξ + 8∆tξFξFξξ + α2∆t = 0 . (20)

Let G(ξ) = Fξ, so that (20) becomes

− 4(1 + 2∆tG)

4G(1 + ∆tG) + α2∆t
dG =

dξ

ξ
, (21)

which has the general solution

G =
−1± (1−∆t2α2 − Csξ

−1)1/2

2∆t
, (22)

where Cs > 0 is an integration constant. Derivatives of F will be real outside
the circle x2 + y2 = ξ = Cs/β centered about the origin, where β = (1 −
α2∆t2)1/2. Therefore, we let Cs → 0, which yields the particular solutions

F± = − ξ

2∆t
(1∓ β) + C± , (23)
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together with the associated trajectory corrections

(x̃0)C,± = x̃0 +∆tFξ∇ξ = x̃0 − (1∓ β)xi . (24)

For the purely rotational flow the discriminant (14) becomes

Λ = 1− α2∆t2 = β2 > 0 ; (25)

the type-1 solution satisfies

Eφxx + C = ∆tφxx + 1 > 0, Eφyy + A = ∆tφyy + 1 > 0 , (26)

and the type-2 solution is such that

Eφxx + C = ∆tφxx + 1 < 0, Eφyy + A = ∆tφyy + 1 < 0 . (27)

Indeed, we find

Fxx,± = − 1

∆t
(1∓ β) (28)

and therefore one has Fxx,+ > −1/∆t and Fxx,− < −1/∆t. A similar expression
yields Fyy,+ > −1/∆t and Fyy,− < −1/∆t. Thus, F+ and F− qualify as the
type-1 and type-2 solutions, respectively. Observe that for (24) to be well-
defined, (25) must be satisfied, for otherwise the correction would have an
imaginary part.

The left and right panels of figure 2 illustrate, respectively, the effect of
the type-1 and type-2 trajectory corrections implied by (24) for the choice
α∆t = 0.85, which assures (25). Arrival points xi (squares), lie on an ex-
act flow trajectory (solid line) and are linked to their respective departure
points x0 (diamonds) by the thick red lines. Likewise, the xi are linked to
their corresponding estimated departure points x̃0 (circles) by straight line
segments that represent the associated estimated trajectories. The set of all
estimated departure points (dashed line) and its corresponding set of arrival
points therefore may be regarded as the boundaries of initial and final fluid
elements, respectively. Black dots show the position of the trajectory correc-
tion (11), which amounts to the displacement x̃0 → (x̃0)C, everywhere parallel
to ∇φ (arrows). Notably, the Euler-forward prediction xi → x̃0 deviates away
from the exact departure point x0 given by (3) and fails to preserve the vol-
ume (area in 2D) of the fluid elements. The flow Jacobian associated with
the latter is Ĵ = 1 + (α∆t)2 > 1 and indicates that the volume of initial fluid
parcels is always larger than that of final elements, which is consistent with the
expansion of solid circles into dashed circles seen in fig. 2. The flow Jacobian
that corresponds to the forward-in-time motion (i.e. x̃0 → xi), is therefore

J = Ĵ
−1

= 1/(1+ (α∆t)2) < 1 and implies that the trajectory estimates cause
final fluid parcels to contract relative to the initial ones. From this perspec-
tive — the one that we shall consider in this paper — trajectory errors that
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arise from pure rotation are responsible for the anomalous contraction of fluid
parcels.

Fig. 2. Anomalous fluid contraction and the type-1 (left) and type-2 (right) MA
corrections in the vicinity of the stationary point (xo, yo) = (0, 0) for the pure
rotational flow. Solid lines denote exact trajectories, whereas; dashed lines mark the
set of the departure points. Straight line segments represent computed trajectories
that link particular arrival points (squares) to their respective standard departure
points (open circles). Arrows indicate the direction of the applied correction that
gives the corrected trajectory estimates (black dots).

Observe that the corrected departure points all lie somewhere on the exact flow
trajectory for both type-1 and type-2 solutions, so that anomalous contraction
is avoided. Also, the corrected departure points lie much closer to the exact
solution in the type-1 case than in the type-2 case. Althougth it is volume-
preserving, the type-2 correction lies farther away from the exact solution than
the original estimate.

2.2.2 Pure deformation

We now consider solutions to (19), for which no obvious symmetries can be
directly determined from the flow geometry, as was the case for vR. We will
attempt to find exact solutions to (19) by making the assumption that φ exists
such that (x̃0)C ≡ x0, i.e. the trajectory correction yields the exact departure
point, which is given by the hyperbolic rotation



x0

y0


 =




cosh(α∆t) − sinh(α∆t)

− sinh(α∆t) cosh(α∆t)






x

y


 ,

where (x, y) = xi and (x0, y0) = x0. This allows one to construct solutions to
(19) from the first order linear PDEs implied by (11)

x0 − xi +∆t(v −∇φ) = 0 , (29)
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from which we find that

φ(x, y) =

(
x2 + y2

2∆t

)
(cosh(α∆t)− 1)− xy

∆t
(sinh(α∆t)− α∆t) + C , (30)

where C is a constant of integration. Substituting (30) into (19) shows that it
corresponds to a MAE solution with associated trajectory correction given by

(x̃0)C = x̃0 + x(cosh(α∆t)− 1)− y(sinh(α∆t)− α∆t) ,
(ỹ0)C = ỹ0 + y(cosh(α∆t)− 1)− x(sinh(α∆t)− α∆t) . (31)

One can easily verify that (30) satisfies φxx, φyy > 0 for α∆t > 0 and therefore
that it corresponds to a type-1 solution. Effects of (31) for α∆t = 0.7 and
α∆t = 1.7 are illustrated, respectively, in the left and right panels of figure 3.

Fig. 3. Anomalous fluid expansion (left) and trajectory intersections (right) with
their respective MA correction in the vicinity of the stationary point (xo, yo) = (0, 0)
for the pure deformational flow.

In this case, the mapping x̃0 → xi has the Jacobian J = (1− (α∆t)2)−1, which
increases monotonically for 0 < α∆t < 1, becomes singular at α∆t = 1 and is
strictly negative for α∆t > 1. Thus, x̃0 is responsible for anomalous expansion
when 0 < α∆t < 1 (i.e. J > 1 or 0 < Ĵ < 1) and trajectory intersections when
α∆t > 1 (i.e. J < 0, Ĵ < 0), as shown by the left and right panels of fig.
3, respectively. Unlike (24), (31) remains well-defined for all timesteps that
violate (17), as shown by the case of intersecting flow trajectories depicted
here. For instance, the vD flow gives L = 2(1.7) = 3.4 > 1 for α∆t = 1.7,
thereby violating (17). However, its associated MAE (19) yields Λ = 1 > 0, so
that (14) is satisfied regardless of the value of α∆t, a special case illustrating
that (17) is only sufficient for (14) to be applicable.

A straightforward computation reveals that (29) has no solution when v =
vR, which implies that solutions to (18) yielding (x̃0)C ≡ x0 do not exist.
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Furthermore, ∇× (x0 − x̃0) = 0 for the v = vD case, and ∇× (x0 − x̃0) 6= 0
for v = vR, meaning that the Helmholtz decomposition of the truncation
error for the case of pure rotation has a non-vanishing curl component. Thus,
by design, the MA correction is unable to compensate for this part of the
trajectory error, which, however, does not produce any change in the parcels’
volume — see fig. 2. This property is also what restricts the existence of (24)
to cases where (25) is satisfied.

The analysis in terms of the elemental flows shows that anomalous fluid con-
traction and expansion due to Euler-forward trajectory approximations can be
attributed to, respectively, pure rotation and pure deformation. In particular,
the case of pure deformation shows that the physical realizability of the flow
can be compromised by trajectory intersections arising from the anomalous
motions if (8) is not ensured. The example of pure rotation has shown that
either type-1 or type-2 solutions were possible candidates for a trajectory cor-
rection. The type-2 trajectory correction provided a less accurate (although
volume-preserving) estimate than the prediction given by the Euler-forward
scheme, whereas; the type-1 correction was both more accurate and volume-
preserving.

In general the shear ∇u = Ω+D is a combination of rotation and deformation.
Thus, although elemental flows provide insight into the mechanics of the MAE
enhancement of the standard SL scheme, assessing the impact of (11) on the
physics of fluids requires the use of a numerical solver.

3 Numerical implementation

3.1 MHD solver

To assess the impact of the MA trajectory correction onto the flow solution
we consider the physical system studied in [1], which consists of the perfectly
conducting, constant density magneto-fluid described by the classical MHD
incompressible Navier-Stokes equations

dv

dt
=−∇π′ +

1

ρoµo

B · ∇B+ ν∇2v , (32)

dB

dt
=B · ∇v, (33)

∇ · ρov=0 , (34)

∇ ·B=0 , (35)
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where B is the magnetic field vector (in Tesla units) and π′ incorporates both
a density-normalised pressure perturbation and magnetic pressure [56]. Here
we use ρo = 1kgm−3 and µo = 1NA−2, with ν = 0.0039m2 s−1 denoting a
uniform, constant kinematic viscosity.

Using (35), the Lorentz force B · ∇B and magnetic induction B · ∇v terms
are further written in conservative form

B · ∇BI = ∇ · (BBI), B · ∇vI = ∇ · (BvI) , (36)

where I stands for the Ith components of (32) and (33).

To outline numerical approximations for the system (32)-(35) it is useful to
symbolize the prognostic equations of the system in the form of (1)

dΨ

d t
= R , (37)

where Ψ = {v,B}T and R = {Rv,RB}T denote, respectively, the vectors of
prognosed dependent variables and associated forcings on the rhs of (32) and
(33).

The equations (37) are integrated using the MHD extension of the EULAG
model, a general-purpose simulation code built on the non-oscillatory forward-
in-time algorithms — see [56] for a detailed exposition —

Ψn
i
= LEi(Ψ̃) + 0.5∆tRn

i
≡ Ψ̂i + 0.5∆tRn

i
, (38)

where Ψn
i
is the solution sought at the grid point (tn,xi), Ψ̃ ≡ Ψn−1 +

0.5∆tRn−1, and LE denotes a two-time-level, optionally advective semi-Lagrangian
[58] or flux-form Eulerian [57] nonoscillatory transport operator (viz. advec-
tion scheme). Because of the focus of the current paper on the semi-Lagrangian
integrations of the governing equations such as (32)-(35), the template algo-
rithm (38) is thought as a realization of the trapezoidal approximation of the
path integral (1).

To allow for such features as grid adaptivity and to facilitate the implemen-
tation of boundary conditions in the possibly time-dependent geometries (e.g.
spherical, cylindrical, etc.) that some problems dictate, EULAG performs
all computations (38) in a computational space (t̄, x̄), distinct, in general,
from the physical space (t,x), in which the solution is sought [51]. Here we
shall restrict ourselves to the impact of the MA correction in the context of
static and uniform Cartesian meshes, in which case both spaces are identical
(t̄, x̄) ≡ (t,x).

The template algorithm (38) is implicit with respect to all prognosed depen-
dent variables and must be inverted algebraically subject to the discrete forms
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of the divergence constrains (34) and (35). To achieve this, (38) is written as
a fixed-point iteration

Ψ
n,ν
i

= Ψ̂i + 0.5∆tL(Ψ)n,ν
i

+ 0.5∆tN(Ψ)n,ν−1
i

− 0.5∆t∇Φ|n,ν
i

, (39)

that separates R into terms that are linear L(Ψ) and nonlinear N(Ψ) with
respect to Ψ as well as a gradient of the potential Φ = (π′, π′, π′, π∗, π∗, π∗)
that incorporates the physical pressure gradient of (32) together with ∇π∗, an
auxiliary perturbation added to the rhs of (33) that compensates truncation
error departures from (35) at each outer iteration ν of (39). Lagging the non-
linear term behind all the other terms in (39) enables one to recover a closed
form expression for Ψn,ν

i
linear in Φ

n,ν
i

Ψ
n,ν
i

= [I− 0.5∆tL]−1
i

(
̂̂
Ψ− 0.5∆t∇Φn,ν

)
, (40)

where
̂̂
Ψ = Ψ̂ + 0.5∆tN(Ψ)n,ν−1. Acting on (40) with the discrete analogs

of (34) and (35) produces two large sparse linear, generally nonsymmetric
systems which are then inverted for π′ and π∗ by using the preconditioned
generalized conjugate residual (GCR) method [23], highlighted in the next
section. The trapezoidal integral in (39) assumes that all contributions toR are
treated to second-order accuracy. However, here we treat the Fickian diffusion
term on the rhs of (32), which we denote by R̃, separately from other forcings
by reproducing the Euler forward integral structure in the argument of the
transport operator LE in (38): Ψ̃ ≡ Ψn−1 + 0.5∆t(R + 2R̃). Upon recovery
of Ψn,ν , the total implicit forcing RI = LΨ − ∇Φ is returned as RIn =

(0.5∆t)−1(Ψn,ν − ̂̂
Ψ); whereas, the total explicit forcing REn = N(Ψ) + R̃ is

obtained from its definition using the updated solution Ψn,ν .

In the actual implementation, the sequence of steps that leads from Ψn,ν−1

to Ψn,ν consists of two consecutive blocks that amount to, respectively, the
solution of (32)-(34) and (33)-(35). Each step in the sequence ν = {1, . . . , ν⋆}
uses the most current update of the velocity and magnetic field, whenever
those are made available inside each block. The first block begins with finding
a first guess for the magnetic field through the inversion of the evolutionnary
form of (33)

B
ν−1/2
i

= B̂i + 0.5∆t(Bν−1/2 · ∇vν−1)i , (41)

in which an O(∆t2) estimate of the velocity v0 = 2vn−1−vn−2 is used at ν = 1.
Here the superscript ν − 1/2 means that (41) is half-way from the completion
of the outer iteration. Together, v̂i and (41) produce the explicit part of (40),
which now becomes available for the solution of the elliptic problem for π′

vν
i
= v̂i +

0.5∆t

ρoµo

(∇ ·BB)
ν−1/2
i

− 0.5∆t∇π′|ν
i
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1

ρo
(∇ · ρov)νi =0 . (42)

The second block begins with finding a new solution to (41) using the updated
velocity

B
ν−1/4
i

= B̂i + 0.5∆t(Bν−1/4 · ∇vν)i , (43)

to be used in the elliptic problem for π∗

Bν
i
= B̂i + 0.5∆t(∇ ·Bν−1/4vν)i − 0.5∆t∇π∗|ν

i

(∇ ·B)ν
i
=0 , (44)

the solution of which completes the outer iteration. Typically, two or three
iterations are sufficient for a practically converged solution, and so here we
use ν⋆ = 2 [56].

3.2 Trajectory schemes

We approximate path integrals (3) by selecting either of c0 = 0 and c1 = 1 or
c0 = c1 = 1/2 in (10). The former gives the Euler-forward approximation to
(3)

x0
0 ≡ xi −∆tv(xi, t) (45)

that either provides the final approximation or the initial iterate for the
second-order-accurate mid-point rule

xκ
0 = xi −

1

2
∆t(v(xκ−1

0 , t0) + v(xi, t)) , κ = 1, . . . , κ∗ , (46)

that arises from the latter choice of coefficients. Two iterations of (46) suf-
fice for a second-order accuracy, while its convergence is assured provided the
Lipschitz constant L (17) is smaller than unity [58]. First-order linear extrap-
olation of v(xi, t0) gives an estimate of v(xi, t) and a fourth-order-accurate
monotone interpolation procedure is used to map the former to the footpoint
of the estimated trajectory v(xi, t0) → v(xκ−1

0 , t0) [59].

Once the estimated departure points are obtained from (45) or (46), they are
corrected according to (11);

(x̃0)C = x̃κ∗

0 +∆t∇φ, κ∗ = 0, 1, 2, . . . . (47)

To obtain φ, we solve approximately the nonlinear boundary value problem
given by substitution of (47) into (8)

F(φ)i ≡ det




∂(x̃0)C
∂x





i

− 1 = 0 , (48)
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where ∂/∂x symbolizes centered finite-differences. For simplicity, we employ
periodic boundary conditions for the trajectory correction,∇φ, in (11) and use
a Jacobian-Free Newton-Krylov (JFNK) approach to find a solution to (48)
[40,37,71]. Under condition (17), periodicity implies that the only admissible
solutions are type-1 — see the discussion in appendices A and B.

JFNK methods derive from the expansion of (48) into a multivariate Taylor
series

Fi(φ
m+1) = Fi(φ

m) + (J (φm)δφm)i +H.O.T. (49)

where J = ∂F/∂φ is the N ×N Jacobi matrix of F with N representing the
number of grid points, δφm = φm+1 − φm and H.O.T. denote the higher-order
terms of the expansion. Neglecting H.O.T. and setting Fi(φ

m+1) = 0 gives rise
to the classical Newton’s method: for any initial guess φ0,

For m = 0, 1, 2, · · ·until convergence do :

Solve (J (φm)δφm)i + Fi(φ
m) = 0 for δφm

i
, (50)

Set φm+1
i

= φm
i
+ δφm

i
, (51)

Exit if ||rm+1||/||r0|| ≤ ε , (52)

enddo.

where ||·|| is a user-defined norm, rm = F(φm) is the residual and ε < 1. Using
a direct method to solve (50) requires explicit evaluation and storage of J ’s
entries. However, in problems arising from physical applications, obtaining
an analytical expression for J may not always be practical or possible. In
particular, the cost of storing matrix entries when the number of unkowns
is large (N ≈ 106 − 107 in this study) may become prohibitively expensive
memory-wise. Instead, we solve (50) approximately using an iterative Krylov
method until the following convergence criterion is satisfied

||J (φm)δφm + F(φm)|| ≤ ηm||F(φm)|| , (53)

where ηm is the so-called forcing term, which controls the accuracy of the lin-
earized problem (50) [9]. The forcing term must be chosen such as to avoid solv-
ing (50) with unnecessary accuracy (viz. oversolving) and to assure quadratic
convergence of the Newton iteration when sufficiently close to the solution.
This is done using the approach discussed in section 6.3 of [35], in which

ηm = min(ηmax,max(ηCm, 0.5τt/||F(φm)||)) , (54)

ηCm =





ηmax, m = 0

min(ηmax, η
A
m), m > 0, γη2m−1 ≤ 0.1

min(ηmax,max(ηAm, γη
2
m−1)), m > 0, γη2m−1 > 0.1

(55)

and ηAm = γ(||F(φm)||/||F(φm−1)||)2 and τt = τa + τr||F(φ0)||. In contrast to
[35], where || · || denotes the Euclidean norm in R

N (e.g. L2), here it represents
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the L∞ norm.

To reduce the effort in coding and because of our own experience with the
numerical machinery already imbedded in the EULAG-MHD model, we seek
the solution of (50) by employing the GCR algorithm, the use of which is first
and foremost intended for the solution of elliptic problems (42) and (44). For
the reader’s convenience, here we outline GCR as customized for (50). Toward
this end, we write the linear system (50) as

L(δφm) = Q , (56)

where L(δφm) ≡ J (φm)δφm andQ ≡ −F(φm). As a result of its use in all-scale
atmospheric applications on the sphere, the formulation of the GCR solver in
EULAG-MHD allows for operator preconditionning. Left-preconditioning is
assumed, which consists in replacing (56) with the alternate problem

P−1[L(δφm)−Q] = 0 , (57)

where P is the preconditioning operator. Under this assumption, augment-
ing (56) with a kth-order damped oscillation equation and using variational
arguments that determine the parameters of its discretization to assure the
minimization of the residual errors 〈aa〉 in the norm defined by the inner prod-
uct 〈··〉 leads to the following algorithm for the progression of the solution [65].
For any initial guess δφm,0, set a0

i
= L(δφm,0)−Qi, p

0
i
= P−1

i
(a0); then iterate:

For i = 1, 2, · · ·until convergence do

for j = 0, · · · , k − 1 do

β = − 〈ajL(pj)〉
〈L(pj)L(pj)〉 ,

δφm,j+1
i

= δφm,j
i

+ βpj
i
,

aj+1
i

= aj
i
+ βLi(p

j) ,

exit if ||aj+1|| ≤ ηm||rm|| ,
qi = P−1

i
(aj+1) ,

Evaluate Li(q) ,

∀l=0,j αl =
〈L(q)L(pl)〉
〈L(pl)L(pl)〉 ,

pj+1
i

= aj+1
i

+
j∑

l=0

αlp
l
i
,

Li(p
j+1) = Li(a

j+1) +
j∑

l=0

αlLi(p
l) ,

end do ,

reset [δφm, a, p,L(p)]k
i

to [δφm, a, p,L(p)]0
i
,

end do .
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Only one matrix-vector operation per solver iteration is needed in the above
procedure, which we approximate as

Li(q) = (J (φm)q)i ≈
Fi(φ

m + ǫ(φm, q)q)−Fi(φ
m)

ǫ(φm, q)
, (58)

whereupon no knowledge of the Jacobi matrix itself is needed, hence the name
‘Jacobian-Free’. To ensure that φm is properly perturbed each time (58) is
evaluated, the increment ǫ is scaled according to

ǫ(φ, q) := max(|〈φmq〉|/||q||2, 1.)sgn(〈φmq〉)h/||q||2 , (59)

where ||·||2 symbolizes the L2 norm; see [9] for a detailed discussion on the def-
inition of (59). Since (58) is O(ǫ)-accurate, h must be larger than the machine
epsilon ǫmach to prevent contamination by cancellation errors. In our double-
precise calculations we have used h = O(

√
ǫmach) = 1 × 10−7[35]. Our solver

uses δφm,0 = 0, initializes φ0 with the solution from the previous timestep
and employs parameters k = 2, γ = 0.9, ηmax = 0.5, τa = 1 × 10−15 and
τr = 1× 10−7 for the absolute and relative error tolerances, respectively.

The GCR solver used for the solution of elliptic problems (42) and (44) em-
ploys a line-relaxation preconditioner based on an implicit Richardson iter-
ation [65]. Althougth one could devise a similar approach for (48) and in-
corporate it into the JFNK framework, here we do not study the impact of
left-preconditioning on the convergence of the solution and chose P = I ≡
the identity matrix.

Mappings of Ψ̃ variables to the departure points given by either of (45), (46)
or (47) are carried out with the fourth-order-accurate monotone interpolation
scheme and give the output of the LE operator in (38).

4 Scalar advection

Scalar advection experiments were first used in [15] to demonstrate the benefit
of the MA trajectory correction for mass and shape preservation. In this sec-
tion we use similar experiments to analyze the impact of the solver’s accuracy
and to present a concrete example of anomalous fluid contraction produced
by standard trajectory estimates (cf. section 2.2.1). Solutions are sought for
two different initial scalars using a cellular flow given by the stream-function
ζ = sin(x) sin(y), with (x, y) ∈ [−π, π] × [−π, π]. The first scalar is spec-
ified as ψ1 = max(0, 2|ζ − 7|); sine hills located at the center the flow’s
vortices, whereas; the second uses the same distribution shifted to the right
by δx = 0.25π (hereafter, ψ2). Each panel of figure 4 shows isolines of ini-
tial/evolved scalars in a single cell [0, π] × [0, π] at a time t⋆ = t/τ , where
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t is physical time and τ ≡ π/1 ms−1 ≈ 3.14s is defined as the cell’s turn-
over time. The latter is displayed at the top of each figure, along with the

Fig. 4. Initial and evolved passive scalars for selected runs displayed in table 1. Each
panel shows a snapshot of a tracer’s isolines, where arrows denote the magnitude
of the constant flow velocity along a panel’s diagonal. The time at which each
snapshot is taken, along with the minimum and maximum of the advected scalar are
displayed at the top of each panel. The upper left panel shows the initial condition for
the ψ1-experiments. Classical SL (run 1-1-0) and MA-enhanced results (run 1-1-2)
are plotted, respectively, after 6.4 turn-over times in the top-right and bottom-left
panels. The bottom-right panel shows the solution of run 1-2-0 at the same instant.

minimum (mn) and maximum (mx) of the advected scalar. Arrows mark flow
trajectories and indicate the flow magnitude and direction across the domain.
Table 1 shows statistics of scalar advection experiments using either of ψ1 or
ψ2 as initial condition. Each row displays, from left to right, the identifier of
the experiment, the L∞ norm of the MA solver residual, its variance σ, the
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SL run |Ĵ − 1|∞ σ t⋆ δψ(t) δψ2(t)

1-1-0 4.00× 10−2 4.00 × 10−2 6.38 -0.9759 -0.9813

1-1-2 1.37× 10−4 9.20 × 10−5 6.38 -0.0021 -0.0105

1-1-4 1.98× 10−6 1.98 × 10−6 6.38 0.0062 -0.0010

1-2-0 4.03× 10−4 3.95 × 10−4 6.38 -0.0214 -0.0320

1-2-2 1.37× 10−7 1.37 × 10−7 6.38 0.0053 -0.0009

1-2-0 4.03× 10−3 3.95 × 10−4 315.29 -0.8101 -0.8728

1-2-2 1.37× 10−7 1.37 × 10−7 315.29 0.1014 0.0347

2-1-0 4.00× 10−2 4.00 × 10−2 6.38 -0.9087 -0.9685

2-1-2 1.37× 10−4 9.20 × 10−5 6.38 -0.0372 -0.2327

Table 1
Results of scalar advection experiments. The first integer in the first column in-
dicates which initial condition is used (i.e. ψ1 or ψ2), the second stands for the
order of accuracy of the trajectory scheme and the third is the base-10 logarithm
of ε (zero means no correction is performed). The second and third columns show,
respectively, the L∞ norm and variance of the inverse flow Jacobian residual. The
fourth column displays the non-dimensional time corresponding to the first and
second moments of the conservation error, which are shown in the fifth and sixth
columns, respectively.

time t⋆ at which the data has been taken, and finally the first and second
moments of the conservation error δψ ≡ ∫

Ω ψ(t) d V/
∫
Ω ψ(t = 0) d V − 1 and

δψ2 ≡ ∫
Ω ψ(t)

2 d V/
∫
Ω ψ(t = 0)2 d V − 1. The first slot in the identifier of each

experiment corresponds to the initial condition used (i.e. i = {1, 2} for ψi),
next comes the order of accuracy of the trajectory scheme that is employed
(i.e. first-order or second-order) and finally the logarithm to the base 10 of
the convergence threshold ε, with zero meaning that no correction has been
applied.

Isolines of ψ1, shown as solid lines in the top-left panel of fig. 4, are, to
a constant, identical to the streamlines and therefore v · ∇ψ1 = 0 implies
that ∂ψ1/∂t = 0. Top-right and bottom-left panels show, respectively, the
evolved ψ1 scalar distribution resulting from the uncorrected scheme (run 1-1-
0) and the solution obtained by applying the MA trajectory correction using
ε = 1 × 10−2 (run 1-1-2) at t⋆ = 6.38. Scalar isolines, also identifiable with
boundaries of fluid elements, have moved inwards toward the center of the vor-
tex in the solution using the uncorrected scheme as a result of the anomalous
fluid contraction, whereas; those of the MA-enhanced solution appear almost
unchanged by the revolutions — see figure 2 for an illustration of anomalous
fluid contraction produced by first-order-accurate trajectory estimates. While
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the former has lost more than 98% of its total mass and 33% of its amplitude
after ≈ 6 revolutions, the latter only suffered 0.2% mass and 2% amplitude
losses — see table 1. Imposing ε = 1 × 10−4 (run 1-1-4) instead produces
a 0.6% mass increase and improves the conservation of δψ2 by a factor of
10 with respect to run 1-1-2. The solution of run 1-2-0 (bottom right panel),
which uses second-order-accurate uncorrected trajectory estimates, can hardly
be distinguished from the MA-enhanced solution of run 1-1-2 by its isolines,
apart from a 10 times larger mass loss.

The top-left panel of fig. 5 shows the tracer that results from corrected second-
order-accurate trajectory estimates (run 1-2-2). Its solution is qualitatively

Fig. 5. Evolved passive scalars for run 1-2-2 at t⋆ = 6.38 (top left), run 1-2-0 at
t⋆ = 315.29 (top right), run 1-2-2 at t⋆ = 315.29 (bottom left) and run 2-1-2 at
t⋆ = 6.38, which uses ψ2 (pale dotted lines) as initial condition (bottom right).

similar to those of runs 1-1-2 and 1-2-0, as far as its shape is concerned.
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SL run min{Λ} min{Eφxx + C} min{Eφyy +A}

1-1-2 0.9200 0.5934 0.5935

1-1-4 0.9200 0.5934 0.5935

1-2-2 0.1939 0.8168 0.8168

Table 2
Properties of MAE solutions found for scalar advection tests. The first column
displays the run’s identifier, the second displays the minimum on the grid of the
discriminant Λ in (14), and the last two columns show the minima of functions
Eφxx + C and Eφyy + A that are used to discriminate between type-1 and type-2
solutions, as per inequalities (15) and (16).

However, it loses 4 times less mass than run 1-2-0 and has a δψ2 smaller by
two orders of magnitude. Notably, runs 1-2-2 and 1-1-4 give basically the same
statistics. Top right and bottom left panels show, respectively, the solutions
of runs 1-2-0 and 1-2-2 after ≈ 315 turn-over times, at which point the MA-
enhanced solution still gives a result that looks very similar to the tracer
obtained after only six turn-over times, whereas; the classical SL solution
exhibits noticeable anomalous contraction of the fluid elements. Thus, even
when employing a second-order-accurate trajectory scheme, the standard SL
solution loses 81% of its total mass after a very long time; whereas, the MA-
enhanced run gains a mere 10%.

The bottom-right panel of figure 5 shows the result of MA-enhanced advection
for the ψ2 scalar (run 2-1-2), where the initial scalar is represented by the
pale dotted lines. Unlike ψ1, ψ2 does not satisfy v · ∇ψ2 = 0 at t⋆ = 0 and
transport occurs perpendicular to the isolines, thereby leading to the formation
of filamentary structures that prevent an equally accurate treatment by the
interpolation algorithm. Consequently, the MA-enhanced run loses ≈ 15 times
more mass when evolving ψ2 than ψ1 (run 1-1-2). Nevertheless, this loss is still
only 4%, as opposed to 91% for the uncorrected scheme (run 2-1-0). Thus,
even though runs 1-1-2 and 2-1-2 both use the same set of corrected departure
points, the accuracies to which they effectively enforce (6) differs entirely as a
result of interpolation.

The analysis of the 2D MAEs in section 2 shows that type-1 and type-2 so-
lutions are the only possible candidates for a trajectory correction if (14) is
satisfied. Moreover, the type-1 solution turned out to be the most accurate
for the case of pure rotation. The discussion in appendix B further shows that
type-2 solutions are forbidden by periodic boundary conditions if (17) is sat-
isfied. Table 2 displays the properties of MAE solutions that were found in
the context of scalar advection tests, for which L ≈ 0.4 < 1. The first column
shows the identifier of each MA-enhanced run, the second shows the mini-
mum of the discriminant Λ in (14); whereas, third and fourth columns show
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the minima of functions Eφxx+C and Eφyy+A that are used to discriminate
between type-1 and type-2 solutions based on (15) and (16), respectively. Since
(14) and (15) are fulfilled by all three solutions, they are all type-1, which is
in accordance with the theoretical predictions.

Scalar advection tests demonstrate that the MA-enhanced solutions supersede
those of the standard SL scheme with respect to the accuracy to which (6)
is enforced. The impact of the MA enhancement of the estimated departure
points on conservativity, however, is ultimately controled by interpolation,
which becomes a key player in the numerical realization of (6) whenever sharp
gradients appear in the solution — recall the discussion in the introduction.

5 Relaxation of an ideal magneto-fluid

The zero-resistivity plasma described by equations (32)-(35) belongs to ideal
MHD, a special case of the general MHD approximation. In this regime, the
magnetic flux through a material fluid surface is constant and the field lines
are said to be ‘frozen’ into the fluid, as per Alfvén’s theorem [26]. Consider the
situation where fluid motions have brought into contact two surfaces having
zero normal magnetic flux, or simply flux surfaces. If the tangential component
of B at their common interface changes direction discontinuously as one moves
across it, we say that a tangential discontinuity (TD) has formed. By Ampère’s
law (∇ × B = µoj), a TD implies the existence of a thin layer of increased
current density j, or current sheet (CS) [47]. For this reason, the terms TD and
CS refer to the same physical entity and they may be used interchangeably.
In a real plasma with finite but small resistivity, the enhanced dissipation of
magnetic energy (ME) within the CS can lead to a local breakdown of the
frozen-in condition thereby allowing field lines pertaining to each flux surface
to reconnect [1]. Consequently, reconnection is accompanied by a release of ME
into other forms of energy, such as kinetic and internal energies. It is funda-
mental to explaining phenomena such as solar coronal mass ejections, flares,
and geomagnetic substorms [30,36,68]. The heating that results from Joule
dissipation also makes it a likely candidate that could account for the million-
degree temperatures observed to characterize the solar corona [53,20,48]. The
ubiquitous nature of reconnection may be understood as a manifestation of the
tendency for fields in a close-to-ideal MHD regime to spontaneously develop
TDs. In particular, analytical studies show that the topology of continuous
fields in a static equilibrium (i.e. for which −∇π′ + ∇ · (BB)/(µ0ρ0) = 0 in
(32)) is not compatible, in general, with that of an arbitrary, non-equilibirum
configuration [34]. The only way for the system to attain such an equilibrium
is therefore to modify its topology by means of reconnection.

Under the frozen-in condition, TD formation may be captured by following
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the evolution of pairs of flux surfaces, collectively represented by sets of level
surfaces S1(x, t) and S2(x, t), also called Euler potentials

DS1/Dt=0 , (60)

DS2/Dt=0 . (61)

Since the field is tangent to the flux surfaces, it must be everywhere parallel
to their intersection

B =W (S1, S2)∇S1 ×∇S2 , (62)

where W (S1, S2) controls the field amplitude. Together with (62), (60) and
(61) completely determine the evolution of B [1]. However, the possibility of
infinitely long field lines or torsion limits the description in terms of Euler
potentials to the case of zero magnetic helicity

H ≡
∫

Ω
A ·B d V = 0 , (63)

where A is the magnetic vector potential [1,41].

Here we will assess the impact of the MA correction on the evolution of a
relaxing magneto-fluid by solving (32)-(35). In this system, total energy de-
creases monotonically as the viscous force drags the fluid toward a state of
minimum magnetic energy with v = 0 (i.e. the total energy rate-of-change
χ = dE/dt ≤ 0) [1]. Moreover, the finite resistivity that is necessary to achieve
topological change must arise from the truncation terms of numerical approx-
imations (38). The initial condition for the velocity and magnetic field are
given by v = 0 and (62) with S1 = cos(y)2 sin(x), S2 = z and W = 1.
In addition to (32)-(35), (60) and (61) are integrated in time and space as
Sn
j i

= LEi(Ŝj), j = {1, 2} to recover the Euler potentials, which are useful for
the identification of TDs. This approach obviates the need to integrate B to
obtain S1 and S2 and therefore eliminates errors that come along with such a
procedure. Although the approach consisting of (60), (61) and (62) could be
used as a alternative to the algorithm exposed in section 3, it is less general
than the latter and involves errors of its own, e.g. see [7]. However, in the
present context it provides a convenient means of assessing the uncertainty of
numerical solutions and the enforcement of the frozen-in condition, as will be
shown shortly.

Before the start of each simulation, the field resulting from the finite-difference
operators used to evaluate (62), which is denoted by Ba, undergoes divergence
cleaning through the elliptic problem for π∗: ∇ ·B = ∇ · (Ba − ∇π∗) = 0 to
ensure the discrete form of (35) to a round-off error. The pressure perturbation
π′ is set to zero initially, thereby setting up an imbalance in (32), (i.e. −∇π′+
∇ · (BB)/(µ0ρ0) 6= 0). We shall describe the system’s evolution using the
non-dimensional time t⋆ = t/tA, where t is simulated physical time and tA ≡
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2π/vA ≈ 6.28s is the typical time it takes for a magnetic disturbance to cross
the sytem, also called dynamical time. Here vA = (B0/

√
µ0ρ0) is the Alfvén

velocity and B0 = 1T is the maximal strength of the initial field. The timestep
size is ∆t = 8 × 10−3s or, equivalently, 1.27 × 10−3 dynamical times, which
is five times smaller than the maximal timestep required for the stability of
viscous dissipation and 15 times smaller than the timescale of reconnection
(based on the shortest timescale of magnetic energy release in a reconnection
event from our 2D experiments). We begin by considering a 2D setup and then
move on to 3D analogs of the same experiment.

5.1 2D magneto-fluid

Analyzed in this section are an uncorrected classical SL and a MA-enhanced
solution using ε = 1 × 10−2 in (52), both of which employ a second-order-
accurate trajectory scheme. The domain is a doubly-periodic square box of
size [−π, π]× [−π, π] and a uniform grid resolution NX = NY = 256 is used.

Figure 6 shows the magneto-fluid at various times during its evolution for the
experiment using the MA trajectory correction. Each panel displays isolines
of the Euler potential S1 (white lines), which are superposed over a color map
of the vertical component of the current density (jz). Since the fluid is 2D, the
isolines can be identified with individual magnetic field lines as long as the
frozen-in condition holds to a satisfactory degree. Black arrows show randomly
selected magnetic field lines constructed from the prognosed field and indicate
the sense ofB. The alignment between isolines and random field lines therefore
provides a measure of the enforcement of the frozen-in condition.

The initial state at t⋆ = 0 (upper-left panel) consists of six sub-systems of
closed field lines, or ‘magnetic islands’. Islands to the left of the x = 0 axis
have counterclockwise oriented field lines and therefore a positive current den-
sity pointing into the plane of the figure at their center, whereas; those to the
right have a clockwise orientation and a corresponding negative current den-
sity. This state is unstable as a result of its unbalanced magnetic stresses
and so it will seek an equilibrium in which the balance of forces is met. At
t⋆ = 5.6 (upper-right panel), the islands already have contracted horizontaly
and expanded verticaly so that they now press against each other across the
former neutral lines at y = ±0.5π. Observe that the horizontal component
of B abruptly changes sign across those two lines and that CSs have formed
in these regions, also called magnetic X-points, which have been labelled by
letters a,b,c and d. In particular, the level curves S1 = ±0.0345, which used
to represent closed field lines at t⋆ = 0, now extend from y = −π to y = +π
as a result of their reconnection across the y = ±0.5π lines. TDs appear here
as cusps in the isolines where the field lines are non-differentiable. This quasi-
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Fig. 6. Relaxation of a magneto-fluid into equilibrium. Each panel shows a color
map of the vertical component of the current density, over which are superposed
isolines of the Euler potential S1 along with randomly selected magnetic field lines
(arrows). The upper-left panel shows the initial (un-balanced) condition. Other
panels correspond to snapshots taken at non-dimensional times t⋆ = 5.6 (top-right),
t⋆ = 12.74 (bottom-left) and t⋆ = 51 (bottom-right). Note the widely differing
ranges of scales of the current density in all four panels.

static flow configuration (or quasi-static state) persists until t⋆ ≈ 10, when it
finally destabilizes as islands on each side of CSs at (c) and (d) are propelled
towards each other by the tension of the reconnected field lines and begin
merging into larger structures — see the lower-left panel of fig. 6 (t⋆ = 12.74).
Only three subsytems out of six remain at t⋆ = 51, where the system appears
to have attained another quasi-static state — see the lower-right panel of fig.
6. Apart from slight misalignments between isolines and field lines taking place
close to the O-shaped current-carrying regions at (c) and (b) in the final state,
the agreement between the field predicted from the Euler potentials and the
one obtained from the integration of (32)-(35) throughout the rest of the evo-
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lution is remarkable. The process depicted by fig. 6 and by which reconnected
field lines evolve from the harmonic into the subharmonic mode is known as
the coalesence instability and has been widely studied both analytically and
numerically [19,55,50].

Histories of the normalised total kinetic energy (KE) and total magnetic en-
ergy (ME) corresponding to the time sequence displayed in figure 6 appear in
the top panel of figure 7, where they are displayed by black and red curves,
with continuous and dotted curves corresponding to runs using the classical
SL and MA-enhanced algorithms, respectively. The panel immediately below
shows the total energy rate-of-change χ, where black continuous and red dot-
ted curves correspond to the standard SL and MA-enhanced SL runs. The KE
first increases from zero to reach approximately 4% of the total initial ME as
the islands are set into motion and as X points are formed, only to fall back
down near zero around t⋆ ≈ 3 under the action of the viscous force. This period
is characterized by a magnetic back-reaction causing a short feedback of KE
into ME. The latter is not the result of reconnection but rather is the effect
of an Alfvén wave propagating throughout the domain; see the animation in
the supplementary material online. Notably, both solutions remain identical
until the quasi-static state is reached at t⋆ ≈ 3, when a KE burst associated
with χ > 0 (i.e. an increase of the total energy E) appears for the first time
— see the insets showing a close-up view of the interval 〈2, 4〉. The latter
therefore clearly is a non-ideal effect that can be attributed to a reconnection
event taking place at a magnetic X point. KE bursts keep occuring during
the quasi-static state until the onset of the merging process at t⋆ ≈ 10, dur-
ing which more than 30% of both solutions’ total ME is converted into KE.
Remarkably, violations of χ ≤ 0 are about 10 times larger in the standard
than in the MA-enhanced run during the merging phase and those are much
more frequent when the MA correction is not applied. In the MA-enhanced
solution, the KE is almost completely dissipated by viscous forces to produce
the quasi-static state at t⋆ ≈ 50. This is not the case for the classical SL
run, however, in which both KE and ME start to increase unboundedly past
t⋆ ≈ 22, dramatically violating conservation of the total energy. Consequently,
the standard SL run was terminated shortly after t⋆ ≈ 24.

The third panel of figure 7 shows the histories of cross-helicities

H ≡
∫

Ω
v ·B d V , (64)

associated with the standard SL (continuous curve) and MA-enhanced so-
lutions (dotted curve). Cross-helicity is an invariant of ideal MHD without
dissipation that provides a measure of linkage between vortex and magnetic
field lines [44]. Since v = 0 initially, departures from H = 0 indicate changes
in the flow/field topology that are either due to reconnection or viscous losses.
The inset indicates that the first departure coincides with the KE burst at-
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Fig. 7. Top: Kinetic energy (black) and magnetic energy (red) for the classical SL
solution (continuous) and for the MA-enhanced solution (dots). 2nd panel from the
top: Total energy rate-of-change for standard (black continuous line) and MA-en-
hanced runs (red dots). 3rd panel from the top: Cross-helicity for the classical SL
(black continuous) and MA-enhanced solutions (red dots). Bottom panel: Minimum
(continuous) and maximum of Ĵ (dots) for the classical SL (black) and MA-enhanced
solutions (red). The time axis is non-dimensional time t⋆.
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tributed to the first reconnection event at t⋆ ≈ 3. Both MA-enhanced and clas-
sical SL solutions compare well during the quasi-static state prior to t⋆ ≈ 10;
whereas, they begin to diverge past this time as the island coalescence takes
its course. This phase is characterized by large fluctuations in the classical SL
solution, the most dramatic being the erratic growth seen to occur in the in-
terval t⋆ ∈ 〈22, 24〉 and simultaneously with the spurious generation of ME —
compare with the top panel. Fluctuations and departures fromH = 0 occuring
in the MA-enhanced run are, on the other hand, much more tempered.

Histories of min{Ĵ} and max{Ĵ} are displayed by solid and dotted curves for
the classical SL (black curves) and MA-enhanced solutions (red curves) in
the bottom panel of figure 7, respectively. A dashed line has been drawn that
marks the ordinate where Ĵ = 0 on the scale of the classical SL solution. As
it was the case for H , the largest departures from (8) are observed during the
coalescence phase, with the classical SL solution exhibiting singular mappings
(Ĵ ≤ 0) as its magnetic energy starts to grow spuriously. The MA-enhanced
solution, on the other hand, shows departures from (8) no greater than 1%
throughout the whole evolution.

Fig. 8. Anomalous fluid expansion and contraction in a classical SL solution at
t⋆ = 24, immediately before its termination. Left and right snapshots show, re-
spectively, S1 isolines superposed over a color map of the jz and a color map of Ĵ.

Left and right panels of figure 8 show, respectively, snapshots of S1 isolines
superposed over color maps of jz and Ĵ immediately before the termination
of the classical SL run at t⋆ = 24. Although islands appear to have merged as
in the MA-enhanced solution, field lines pertaining to the bundle at (c) are
quite distorted and the alignment between the isolines of S1 and the field lines
is lost. Interestingly, the intense and spatially complex current distribution
observed at (c) in the left panel corresponds to the region where the largest Ĵ
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errors appear (right panel). Those errors can be attributed to both anomalous
contraction (Ĵ > 1) and anomalous expansion (Ĵ < 1).

5.2 3D magneto-fluid

The fact that most natural systems evolve in more than two space dimen-
sions demands further assessment of the MA-enhanced scheme in a 3D envi-
ronnement. Hence, we further explore its comparison with the classical SL
scheme using 3D analogs of the experiments of section 5.1. Here the do-
main is a triply-periodic box [−π, π] × [−π, π] × [0, π/4] with grid resolution
NX = NY = 256, NZ = 32 and initial conditions are given as before by
v = 0, (62), S1 = cos(y)2 sin(x), S2 = z, W = 1. Thus, field lines at t⋆ = 0 all
lie in horizontal planes with the configuration shown in the top-left panel of fig-
ure 6. We begin by comparing results from second-order-accurate uncorrected
and corrected trajectory schemes. The MA-enhanced run uses ε = 1× 10−2 in
(52).

The upper graph of figure 9 shows histories of the KE and of the ratio of
volume-integrated vertical ME to total ME (< B2

z > / < B2 >) for the first
10 dynamical times of each run. The lower graph shows, snapshots of field
lines in the region −π < x, y < 0 for standard SL (top panels) and MA-
enhanced runs (bottom panels) at various times during their evolution (from
left to right). As in the 2D solution, KE initially grows out from the instability
that leads to the formation of the four X-points and a quasi-static state; see
the two leftmost snapshots in the lower graph. Here, however, an infinitesimal
but non-zero amount of ME lies in the vertical magnetic field at t⋆ = 0 as a
result of the enforcement of (35) for the initial condition. The latter eventually
settles into a phase of exponential increase that lasts until t⋆ ≈ 3, when a first
KE burst appears due to reconnection, causing it to jump by several orders
of magnitude almost instantaneously. Notably, the first reconnection event
occurs at the same instant as in the 2D runs at t⋆ ≈ 3, prior to which the
flow evolution is purely 2D, with only a billionth of the total ME residing in
Bz. Profuse liberation of ME into KE takes place shortly after, only to be
dissipated away by viscous forces. The growth of the main KE peak at t⋆ ≈ 5
is accompanied by significant build up of vertical ME that shows up as kinking
of the field lines in the central regions of the islands — see central panels of
the lower graph, corresponding to t⋆ = 5.09. By t⋆ = 10, the vertical magnetic
field contains ≈ 15% of the total ME and the field itself has become chaotic,
as shown by the two righmost panels. Thus, the growth of Bz overwhelms the
2D state before the islands can complete merging together and, as a result,
the state of the 3D solution at t⋆ = 10 is very different from the one obtained
at t⋆ = 51 in the 2D experiments — compare with the bottom-right panel of
fig. 6.
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Fig. 9. Top graph: Kinetic energy (black curves) and ratio < B2
z > / < B

2 >
(red curves) histories for the classical SL solution (continuous curves) and for the
MA-enhanced solution (dots). Lower graph: color rows show consecutive snapshots
of the magnetic field lines in classical SL (top) and MA-enhanced runs (bottom)
taken at, respectively, t⋆ = 3.82, t⋆ = 5.09 and t⋆ = 10.19.

Noteworthy, experiments that have been studying the growth of 3D modes
starting from a 2D static equilibrium containing magnetic islands also report
a diminished role of the coalescence instability [19]. In particular, 3D modes
are observed to grow faster than any of the 2D modes associated with the
relaxation of the reconnected field into the subharmonic mode and so field
lines move out of their respective planes quicker than they reconnect, thereby
preventing the merging of the islands.

Histories of cross-helicity H (64) and the current helicity

Hc ≡
∫

Ω
(∇×B) ·B d V , (65)
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are shown in the top panel of figure (10) with black and red curves, respec-
tively. Unlike H , Hc is not an MHD invariant and instead gives a measure of
torsion in the field lines. Both quantities are well conserved for the classical
SL (solid curve) and MA-enhanced run (dotted curve) prior to the onset of
reconnection. However, jumps appear in their evolution in the classical SL run
which coincide with the first KE burst — see the inset showing a magnification
of interval t⋆ ∈ 〈2.8, 4〉. Those jumps are, on the other hand, smaller in ampli-
tude by at least an order of magnitude in the MA-enhanced run. Moreover, H
grows linearly at a higher rate in the classical SL than in the MA-enhanced
run during the dynamical time following t⋆ ≈ 3. In contrast, nothing precise
can be said about the behavior of both schemes with respect to conserva-
tion of both quantities past t⋆ ≈ 4 as the flow becomes chaotic. Histories of
min{Ĵ} and max{Ĵ} for the classical (black curves) and MA-enhanced runs
(red curves) are shown in the bottom panel. Observe that the largest errors
take place in the classical SL run simultaneously with the large jumps in H
and Hc at t

⋆ ≈ 3. Notably, departures from Ĵ = 1 only appear during the brief
interval t⋆ ∈ 〈3, 5〉 and diminish as the flow transits toward a 3D configuration
and a chaotic state. By contrast, they persisted over a much longer period of
time in the 2D experiments, in which reconnection kept on going for several
dynamical times as a result of island coalescence; cf. bottom panel of fig. 7.

Fig. 10. Top: Cross-helicity (black curves) and current helicity histories (red curves)
for the classical SL (continous curve) and MA-enhanced solutions (dotted curve).
Bottom: Histories of minimum (continuous lines) and maximum (dots) of the
(time-independent) inverse flow Jacobian taken over the computational grid for
the classical SL (black curves) and MA-enhanced solutions (red curves).
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Table 3 provides a quantitavive measure of fluctuations of H and Hc occuring
at the beginning of the brief reconnection phase by displaying total time vari-
ations ∆H ≡ ∫ |dH/d t| dt and ∆Hc ≡

∫ |dHc/d t| dt. Using timeseries data of
H and Hc, we computed δH ≡ ∑

i |Hi+1−Hi| and δHc ≡
∑

i |(Hc)i+1− (Hc)i|
for the interval t⋆ ∈ 〈2.8, 4〉 for runs that employ various accuracies of the
inverse flow Jacobian. The first column identifies each run, with an integer

SL run δH[×103] δHc[×103] t/tstandard

0 4.66 8.40 1.00

1 1.74 0.96 0.97

2 2.55 1.27 1.03

3 2.52 0.51 1.27

4 2.53 0.54 1.68

Table 3
Sensitivity to Jacobian residual and performance of the 3D solver. The first column
identifies the experiment, where the integer denotes the base-10 logarithm of the
MA solver convergence threshold ε. Second and third columns display the time
variations δH and δHc for the interval t⋆ ∈ 〈2.8, 4〉, while the last column indicates
the total wallclock time normalized with respect to the standard SL scheme.

corresponding to the base-10 logarithm of ε. The normalized time-to-solution
(wallclock time) relative to the standard SL run t/tstandard is displayed in the
last column. The classical SL experiment (run 0) indeed possesses the largest
of all variations. In particular, δH appears to converge to a value δH ≈ 2.5
after the residual has been decreased by 2 orders of magnitude; whereas δHc

converges to δHc ≈ 0.5 after a 3 orders-of-magnitude decrease.

Fluctuations of H and Hc taking place for t⋆ > 4 are, by opposition, far
greater and are especially strong during the growth of Bz and transition to
chaos; see the central panels of both solutions in the lower graph of fig. 9. The
fact that no systematic impact due to the use of the MA correction can easily
be discerned from histories of H and Hc in this time period either points to
interpolation errors smearing out the effect of the trajectory correction (recall
the discussion in the last paragraph of section 4) or simply to the chaotic flow
behavior that prevails past t⋆ ≈ 4.

Notheworthy, discrepancies in the current-helicities predicted by corrected and
uncorrected schemes will manifest themselves as differing amounts of twist in
fields of both solutions. This would appear to be consistent with the observed
differences between the morphologies of field lines from each run (fig. 9)
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6 Summary

We studied the impact of incompatible integrations of the equations of incom-
pressible fluid and magneto-fluid dynamics using the semi-Lagrangian approx-
imation. A necessary condition for the compatibility of a SL scheme has been
defined through the solution of (8) using the fundamental Euler expansion for-
mula and the mass continuity equation. Closed-form solutions to the MAEs
arising from purely rotational and deformational elemental flows have shown
that the anomalous contraction and expansion resulting from Euler-forward
trajectory approximations to the trajectory integrals (3) are eliminated by the
MA trajectory correction. Scalar advection experiments using the MA correc-
tion support the theoretical results from section 2 by removing a substantial
part of the anomalous contraction introduced by the standard trajectory es-
timates and by improving mass conservation.

Magnetic relaxation experiments have provided an extreme example where the
consequences of breaking the flow topology and neglecting to enforce (8) alto-
gether can be disastrous to the numerical solution. In particular, enforcing (8)
has proven to be crucial for assuring the physical realizability and nonlinear
stability of the 2D experiments, in which the lack of MA correction lead to
unbounded growth of the total energy and trajectory intersections. Applying
the MA correction in 2D and 3D experiments further has improved the con-
servation of the cross-helicity MHD invariant during phases of reconnection.

Future studies of the impact of compatibility on the flow features could be ex-
tended to stratified flows in more complex geometries (with suitable boundary
conditions) by deriving corresponding generalized MAEs from (6), such as, for
instance, global MHD simulations of the solar convection zone [14,5,52,29].
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Appendix A: Ellipticity of the 2D MAE

Let Ω be a convex domain in which the MAE solution is sought and ∂Ω its
boundary. A nonlinear PDE in M variables of the form

P (x1, . . . , xM , φ, φ1, . . . , φMM) = 0 , (66)

is said to be elliptic if the quadratic form

M∑

i,k=1

∂P

∂φik
θiθk , (67)

is positive definite in the parameters θ for all x1, x2, . . . , xM in Ω and all values
of the other arguments of P (cf. section IV.6.2 of [16]); here φi ≡ ∂φ/∂xi and
φik ≡ ∂2φ/∂xi∂xk. Therefore, the quadratic form associated to (12) may be
expressed as

Q(θ1, θ2) ≡ (Eφyy + A)θ21 − 2(Eφxy − B)θ1θ2 + (Eφxx + C)θ22 , (68)

and is positive-definite provided (θ1, θ2) = (0, 0) is a minimum. This is the case
if the discriminant Λ ≡ 0.25(Qθ1θ1Qθ2θ2 −Q2

θ1θ2
) > 0, Qθ1θ1 > 0 and Qθ2θ2 > 0.

Using (12), we find that the condition for ellipticity is given by

Λ = (Eφyy + A)(Eφxx + C)− (Eφxy −B)2 = AC − B2 −DE > 0 , (69)

and

Eφxx + C > 0 , Eφyy + A > 0 . (70)

On the other hand, a negative-definite Q is defined by Λ > 0, Qθ1θ1 < 0 and
Qθ2θ2 < 0, which implies

Eφxx + C < 0 , Eφyy + A < 0 . (71)

Importantly,Q is either positive-definite or negative-definite given (69), whereby
φ must fall into either one of the two solution classes defined by (70) and (71).
For the special case where A = B = C = D = 0, (70) and (71) imply, re-
spectively, convexity and concavity of the MAE solution φ, whereby (12) is
elliptic if and only if φ is convex [27,4]. In general, however, one cannot expect
the MAE solution to be either convex or concave. Consequently, in this paper
we shall simply refer to solutions satisfying (70) and (71) as the type-1 and
type-2 solutions. Hence, (12) is elliptic if and only if φ is a type-1 solution.

To obtain an interpretation of (69) in terms of fluid flow, we substitute (13)
into (69), and express the latter in terms of the derivatives of the path-mean
velocity ṽ. This leads readily to Λ = 1−(0.5∆t(ũy−ṽx))2 = 1−(0.5∆tω̃)2 > 0,
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whereupon ∣∣∣∣
ω̃∆t

2

∣∣∣∣ < 1 (72)

becomes both the necessary and sufficient condition for (69). Furthermore, the
inequality (72) is closely linked to the Lipschitz condition

L := ∆t

∣∣∣∣∣

∣∣∣∣∣
∂ṽ

∂x

∣∣∣∣∣

∣∣∣∣∣ < 1 , (73)

which gives a measure of convergence/divergence of the estimated flow tra-
jectories (9) and suffices for preventing their intersections, where the velocity
field is assumed to be at least C(1) [58]. Now, rearranging (73) gives

1>L := ∆t
(
|ṽx|+ |ũy|+ |ṽy|+ |ũx|

)

≥∆t
(
|ṽx − ũy|+ |ṽy|+ |ũx|

)

≥∆t|ṽx − ũy|
≥ 0.5∆t|ṽx − ũy| = 0.5∆t|ω̃| . (74)

Thus, L < 1 is sufficient for (72) and therefore also (69).

Appendix B: Unicity of MAE solutions

To determine the unicity of solutions to (12), one must have some knowledge
of the imposed boundary conditions. For instance, the Dirichlet problem for
the MAE consists in finding a solution to (12) in a domain Ω with specified
solution at the boundary ∂Ω, e.g. φ|∂Ω = Γ, where Γ is a known function of
the coordinates. At most two solutions to the Dirichlet problem exist, which
assume the same boundary values Γ, given the non-negative discriminant (14).
This result, known as the Rellich theorem, follows from the demonstration that
for specified Γ the type-1 and type-2 solutions are unique (cf. appendix A and
section IV.6.3 of [16]). For example, it is possible to choose the constants C+

and C− in (23) such that F+(ξ
⋆) ≡ F−(ξ

⋆) = Γ on a circle of radius R =
√
ξ⋆

centered at the origin, whereby F+ and F− are unique for a given Γ.

Moreover, for arbitrary boundary conditions, a solution to (12) is either type-1
or type-2 if (14) is satisfied, although the authors know of no corresponding
proof of uniqueness. In such a case, however, the type of solution can be
verified once a particular solution has been found, for instance with the use
of a numerical solver; see sections 3.2 and 4.

Substituting (13) in the left inequalities of (15) and (16) implies, respectively,

∆tφ{1}
xx > ∆tũx − 1 ≥ −∆t|ũx| − 1 > −L− 1 > −2 (75)
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and
∆tφ{2}

xx < ∆tũx − 1 ≤ ∆t|ũx| − 1 < L− 1 < 0 , (76)

where φ{1}
xx and φ{2}

xx correspond to the type-1 and type-2 solutions. Similarly,
φ{1}
yy > −2/∆t and φ{2}

yy < 0. This last property imposes severe constraints on
solutions of the second type, namely, that they possess only one stationary
point (a maximum).

If periodic boundary conditions are assumed for all prognosed dependent vari-
ables the trajectory correction, ∇φ, in (11) must also be periodic, whereupon
one has the additional constraint

0 = φx|X − φx|0 =
∫ X

0
φxx , (77)

and similarly for φyy. This clearly forbids the existence of type-2 solutions, as
per inequality (76) and the associated upper bound on φyy.

The above argument can also be applied to a bounded domain Ω, since in
this case one would have φx|0 = φx|X = 0 in (77) as a result of prescribing
zero normal velocity on ∂Ω. In this situation, observing (17) would also assure
that the departure points remain inside the domain, since fluid elements from
its interior could not leave Ω without intersecting trajectories of the elements
moving alongside ∂Ω. Generally, for problems with the normal components of
the trajectory displacements specified at the domain boundary, boundary con-
ditions for (12) may be derived from (11), which naturally leads to a Neumann
problem for the MAE [3,21,66,64].
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l’Académie Royale des Sciences de Paris (1781) 666-704.

[46] J.M. Ottino, The kinematics of mixing: streching, chaos, and transport,
Cambridge University Press, Cambridge, 1989.

[47] E.N. Parker, Spontaneous current sheets in magnetic fields: with applications
to stellar X-rays, Oxford University Press, 1994.

[48] E.N. Parker, Nanoflares and the solar X-ray corona, ApJ 330 (1988) 474-479.

[49] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Translated from the
first Russian edition by F. Leo Boron with the assistance of Albert L. Rabenstein,
C. Richard, and P. Bollinger, Noordhoff Ltd., Groningen, 1964.

[50] P.L. Pritchett, C.C. Wu, Coalescence of magnetic islands, Phys. Fluids 22 (1979)
2140-2146.

[51] J.M. Prusa, P.K. Smolarkiewicz, An all-scale anelastic model for geophysical
flows: dynamic grid deformation, J. Comput. Phys. 190 (2003) 601-622.
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