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ABSTRACT

In this work we explore the physics governing the development of

large-scale flows in solar-like stars. We performed anelastic global 3D

simulations of rotating convection in a model whose stratification re-

sembles that of the solar interior. The numerical method corresponds

to the so-called implicit large-eddy simulations designed to capture the

contribution of small, non-resolved, scales. We obtained two different

regimes of differential rotation, with equatorial zonal flows accelerated

either in the direction of rotation (solar-like) or in the opposite direc-

tion. While models with solar-like differential rotation tend to produce

multiple cells of meridional circulation, models with anti-solar differ-

ential rotation result in one or two cells of strong meridional velocity.

Our simulations for different rotation rates and stratification indicate

that the resulting pattern depends on the ratio between buoyancy and

Coriolis forces. By including a strongly subadiabatic layer at the bot-

tom of the domain, a radiative zone, we have been able to reproduce

regions of strong radial shear similar to the solar tachocline. Simi-

larly, enhanced superadiabaticity at the top of the domain results in

the formation of a near-surface shear layer located mainly at lower

latitudes. The models reveal a latitudinal gradient of potential tem-

perature localized at the base of the convection zone and in the stable

region, however, it does not propagate across the convection zone.

Thus, baroclinicity effects remain small and the rotation iso-contours

align in cylinders along the rotation axis (Taylor-Proudman balance).

Our results also confirm the alignment of large convective cells along

the rotation axis in the deep convection zone and suggest that such
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pattern can be hidden beneath the supergranulation layer.

Subject headings: Sun: interior — Sun: rotation
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1. Introduction

Stellar magnetic activity is thought to be a result of inductive effects of large-scale

shearing flows as well as complicated collective effects of small-scale turbulent motions in

convective envelopes. Cyclic behaviour has been detected in several late-type stars in the

emission cores of the Calcium H and K line profiles, with periods between 7 and 22 years

(Baliunas & Vaughan 1985; Hall 2008). The best known and studied example is, however,

the 11-years sunspot cycle, where observed activity is caused by yet poorly understood

dynamo processes in the convection zone occupying the upper 30% of the solar radius. A

similar mechanism is expected to operate in other solar-like stars.

Several different dynamo models have been proposed over the years in order to describe

the solar cycle using a MHD mean-field (Steenbeck et al. 1966) formalism (see Brandenburg

& Subramanian 2005; Charbonneau 2010, for reviews on the topic). However, since the

dynamics of the magnetic field in the solar interior remains hidden to the observations,

there are strong model ambiguities.

The large-scale plasma flows in the solar interior, such as differential rotation and

meridional circulation have been probed thanks to helioseismology. We know that the Sun

rotates differentially in latitude through the whole convection zone with a profile that forms

conical iso-rotation contours (Schou et al. 1998). Below the bottom of the convection zone

the rotation becomes rigid creating a thin radial shear layer (Kosovichev 1996) called the

tachocline (Spiegel & Zahn 1992). Besides, at the upper 50Mm of the convection zone the

rotation rate decreases apparently at all latitudes forming another thin layer of negative

radial shear so-called near-surface shear layer (Thompson et al. 1996; Corbard & Thompson

2002).

The meridional circulation has been observed at the solar surface through different

techniques (e.g., Giles et al. 1997; Zhao & Kosovichev 2004; Ulrich 2010; Hathaway &
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Rightmire 2010; Gizon & Rempel 2008). This flow is directed poleward with amplitudes

∼ 20 m/s peaking at mid latitudes. By tracking supergranules Hathaway (2012) was

recently able to infer a return flow at 70 Mm below the photosphere. Besides, helioseismic

inversions by Zhao et al. (2012, 2013) revealed that the return flow is located in the middle

of the convection zone and suggested the existence of a second circulation cell located

deeper.

More recently asteroseismology opened the door to the exciting possibility of measuring

the large scale flows in different classes of stars. Of special interest are stars at the same

stage of evolution and structurally similar to the Sun. The study of these stars could

provide a better understanding of the stellar dynamo mechanism and the generation of

cosmic magnetic fields in general.

The observational results from helioseismology have imposed some constrains to

the mean-field dynamo models but are still insufficient to provide a complete scenario.

Thus, global numerical simulations seem to be the most promising approach towards the

understanding of the solar dynamics and dynamo, filling the gap left by observations.

Steady dynamo solutions have been found in numerical models at the solar rotation rate.

These models showed that the magnetic field in the convection zone is organized in the

form of toroidal wreaths (Brown et al. 2010). Oscillatory dynamo solutions have also been

found in simulations of stars rotating at 3 or more times faster than the Sun (Käpylä et al.

2012; Nelson et al. 2013). However, none of the current numerical models has been able

to reproduce sufficiently well the solar differential rotation and meridional circulation, in

particular, the tachocline and the subsurface shear layer, and still are not able to explain

the solar activity cycles.

In spite of the fast developments of computer capabilities, all global simulations are

far from realistically modeling the Sun or solar-like stars. The problem arises from the low
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values of the dissipative coefficients in the stellar interior which impose a large separation

among the scales of energy injection and diffusion. Most of the simulations fall in the group

of the so-called Large-Eddy Simulation (LES) models. These models resolve explicitly the

evolution of large-scale motions while the contribution of unresolved, sub-grid scale (SGS),

motions is represented by ad-hoc turbulence models (e.g. Smagorinsky 1963). For many

years the small-scale contribution used in solar global simulations was the most simple, e.g.,

in the form of enhanced eddy viscosity (e.g., Gilman 1976; Brun et al. 2004). Recently, more

sophisticated SGS models, like the dynamic Smagorinsky viscosity model (Germano et al.

1991), have been implemented leading to a more turbulent regime in the global models

(Nelson et al. 2013).

An interesting alternative to such explicit SGS modeling consists in developing

numerical schemes which accurately model the inviscid evolution of the large scales whilst

the SGS contribution is intrinsically captured by numerical dissipation. This class of

modeling is called Implicit Large Eddy Simulations (ILES), and is implemented in the

EULAG code (Smolarkiewicz 2006; Prusa et al. 2008), used primarily in atmospheric and

climate research.

Recently, oscillatory dynamo solutions were studied in global simulations performed

with the EULAG code for the case of the solar rotation (Ghizaru et al. 2010). Although

the period of the simulated activity cycles is of ∼ 40 years (instead of 11), and also there

is no clear latitudinal migration of the toroidal field towards the equator, these results are

a promising step forward in the understanding of the solar dynamo. These simulations

with EULAG were mostly focused on the dynamo rather than on the differential rotation

problem. The present work aims to explore the hydrodynamical case of rotating convection

with the EULAG code, giving attention to the physics behind the development of large-scale

flows: meridional circulation and differential rotation.
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The main challenge is to reproduce the solar differential rotation profile inferred by

helioseismology with the characteristics described above. Starting with the seminal work

by Gilman (1976) this problem has been studied numerically during the last few decades

without obtaining a completely satisfactory result. This is a complex problem, and its

solution must fulfill several observed properties:

i reproduce the latitudinal differential rotation with a difference in the rotation rate

between the equator and 60◦ latitude of ∼ 90nHz;

ii obtain iso-rotation contours of Ω(r, θ) aligned along conical lines in the bulk of the

convection zone;

iii reproduce the sharp transition region between the differentially rotating convection zone

and the solid body rotating radiative zone, i.e., the tachocline,

iv reproduce a sharp decrease in the solar rotation rate in the upper 50Mm of the solar

convection zone, in other words, a near-surface rotational shear layer with a negative

radial gradient of the angular velocity.

The item i) has been explored since Gilman (1976), and is understood as a combined

effect of the buoyancy and Coriolis forces. Rotation leads to correlations between the three

components of convective motions, reflected in anisotropy of the Reynolds stress tensor,

which determines the direction of the angular momentum flux. In global simulations with

the anelastic code ASH, Brun & Toomre (2002) scanned the parameter space, particularly

in terms of the Rayleigh (Ra) and Prandtl (Pr) numbers, to determine a trend at which the

latitudinal gradient of differential rotation could be sustained at higher levels of turbulence.

Item ii) is perhaps the most cumbersome of all the items above. Most of the global

simulations of rotating convection obtain the iso-lines of angular velocity aligned along the
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rotation axis, following the so-called Taylor-Prouman state, which can be explained from

the φ component of the vorticity equation:

∂ωφ

∂t
= r sin θ

∂Ω2

∂z
−

g

rCp

∂s

∂θ
, (1)

where ωφ is the azimuthal component of the vorticity, Ω is the angular velocity, g is the

gravity acceleration, s is the entropy and cp is the specific heat at constant pressure. The

derivative along the cylindrical radius is defined as ∂z = cos θ∂r − r−1 sin θ∂θ.

In the steady state (∂ωφ/∂t = 0), the cylindrical iso-rotation could be attributed

to insufficient baroclinicity in the system, i.e., if entropy does not exhibit a pronounced

latitudinal gradient then ∂Ω2/∂z = 0 . In hydrodynamic mean-field models, the Taylor-

Proudman state is broken by considering anisotropic heat conductivity which could result

from rotational influence on the turbulent eddies (Kitchatinov & Ruediger 1995). Similarly,

Rempel (2005) studied how a subadiabatic stratification beneath the convection zone

can produce a gradient in the entropy perturbations that could be transported into the

convection zone. Miesch et al. (2006) implemented the Rempel’s idea in global convection

simulations by imposing a latitudinal gradient of entropy as a bottom boundary condition.

They found with such model that the iso-contours of angular velocity form conical lines

such as determined by helioseismology.

As for the item iii), the tachocline has been included in dynamo simulations by

imposing a forcing term in the momentum equation (Browning et al. 2006). Hydrodynamic

simulations by Käpylä et al. (2011b) considered a stable radiative zone at the bottom of

the domain. However, due to the large values of the viscosity the angular momentum was

transported into the sub-adiabatic zone causing the spreading of the tachocline. Simulations

with the EULAG code (Ghizaru et al. 2010; Racine et al. 2011; Guerrero et al. 2013, and

the ones presented in this paper) include a strongly sub-adiabatic radiative zone, and have
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been able to reproduce the rotational shear layer in agreement with the solar observations.

The key elements in the tachocline modeling are the stably stratified layer at the bottom of

the domain and small values of the numerical viscosity, preventing the transport of angular

momentum into the radiative zone. Finally, for item iv) De Rosa et al. (2002) studied

convection in a thin shell convering only a fraction of the upper convection zone. With the

latitudinal solar rotation imposed as a boundary condition at the bottom of the domain,

they found a decrease in the rotation rate with height at each latitude resembling the

observations. However, the formation of this layer has not been explored in global models

including the whole convection zone.

It is also a challenge to reproduce the poleward meridional circulation observed at

the solar surface. This is more difficult to achieve since global numerical models are

not able to resolve the large-scale dynamics in the bulk of the convection zone together

with the small-scale motions, such us granulation and supergranulation, observed in the

uppermost layers. Hydrodynamical mean-field models are able to reproduce the Sun’s

poleward meridional velocity (Rempel 2005; Kitchatinov & Olemskoy 2012), and obtain one

meridional cell per hemisphere. In fact, Kitchatinov & Olemskoy (2012) have obtained in

their models a single meridional circulation cell for different late-type stars, independenlty

of the stratification or the rotation rate. This result is in disagreement with most of the

global numerical simulations which normally show that the meridional circulation has

several cells per hemisphere.

Furthermore, recent studies of the amplitude of convective velocities at the solar

interior have pointed out the discrepancy between the turbulent velocities obtained by

helioseismology observations (Hanasoge et al. 2012), theoretical estimations (Miesch et al.

2012) and numerical models (e.g., Miesch et al. 2008). This has emphasised the need of

a better understanding of the multiscale turbulent velocities in the solar convection zone.
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Both issues, the meridional circulation and turbulent velocities deserve further investigation.

Having a solar model as our reference, in this paper we investigate the items (i) to

(iv) for the Sun and also study the generation of differential rotation and meridional

flows in solar-like stars. Specifically, we study turbulent convection in spherical shells, the

stratification of which resembles the structure of the solar interior. Considering simulations

for different rotation rates we first explore the phenomena of angular momentum transport

and its relationship to different configurations of mean flows within the convective layer. As

a test for the implicit SGS method employed in this paper, we next explore the convergence

of the numerical scheme with increasing resolution. Finally, considering angular momentum

transport arguments we explore the possibility of forming a near-surface rotational shear

layer such as observed in the upper layers of the solar convection zone.

This paper is organized as follows: in §2 we describe the numerical model, in §3 we

present our results, including the properties of convective flows and the resulting differential

rotation and meridional circulation. We also describe the angular momentum mixing in

terms of the Reynolds stresses. Finally we discuss our attempt to reproduce the near-surface

shear layer. We conclude and discuss our results in §4.

2. Model

Similarly to the previous dynamo simulations with the EULAG code (Ghizaru et al.

2010; Racine et al. 2011), our model covers a full spherical shell, i.e., 0 ≤ θ ≤ π, and

0 ≤ φ ≤ 2π in latitude and longitude, respectively. In radius our domain spans from 0.61R⊙

to 0.96R⊙ (although in section 3.3 we extend our domain up to r = 0.985R⊙).

We solve the anelastic set of hydrodynamic equations following the formulation of
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Lipps & Hemler (1982):

∇ · (ρsu) = 0, (2)

Du

Dt
+ 2Ω× u = −∇

(

p′

ρs

)

+ g
Θ′

Θs

, (3)

DΘ′

Dt
= −u ·∇Θe +

1

ρs
H(Θ′)− αΘ′ , (4)

where D/Dt = ∂/∂t + u · ∇ is the total time derivative, u, is the velocity field in a

rotating frame with constant angular velocity Ω, p′ and Θ′ are the pressure and potential

temperature fluctuations with respect to an ambient state (discussed below), respectively,

H(θ′) represents the radiative and heat diffusion terms, ρs and Θs are the density and

potential temperature of the reference state chosen to be isentropic (i.e., Θs = const) and in

hydrostatic equilibrium, g = GM/r2 is the gravity acceleration. The potential temperature,

Θ, is related to the specific entropy through s = cp lnΘ + const.

Finally, the term αΘ′ represents the balancing action of the turbulent heat flux

responsible for maintaining the steady, axi-symmetric, solution of the stellar structure (see

next section). It is characterised by the ambient state Θe (together with the corresponding

pressure pe). In the reported simulations, the αΘ′ term forces the system towards the

ambient state on a time scale τ = α−1 = 1.55 × 108 s (∼ 5 years). This timescale is much

shorter than the timescale of radiative losses and heat diffusion, meaning that the turbulent

heat flux is the primary driver of convection in the system. After verifying that the terms in

H(θ′) do not have any effect on the model solutions, we did not included these terms in the

simulations below. However, the choice of τ can affect the results since the final potential

temperature is the total of the ambient state and fluctuations. The longer (shorter) τ ,

the larger (smaller) the value of Θ′. We have verified (in simulations not presented here)

that models with shorter τ suppress convection and reproduce a profile close to Θe. In

models with longer τ , on the other hand, the large fluctuations tend to homogenize the final

potential temperature creating a flat, more adiabatic, profile. Consequently, the selected
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value of τ has been determined empirically as a compromise between a weak forcing of

the energy equation and a reasonable relaxation time to a statistically steady state of the

system, that still leads to the desired results while maintaining convection and the stellar

structure over a long observation time.

2.1. Ambient state

The ambient state in the simulations is approximated by a polytropic model. The

polytropic stratification for an ideal gas, p = ρRT , is given by the hydrostatic equation:

dT

dr
=

g

(1 +m)R
, (5)

where g(r) = gb(rb/r)
2 is the gravity acceleration, rb is the radius of the bottom boundary,

gb is the gravity acceleration at rb, R is the gas constant, and m is the polytropic index.

The solution of Eq. (5) integrated from rb to r and assuming m = const is:

T0 = Tb

[

1−
rbgbrb

pb(1 +m)

(

1−
rb
r

)

]

, (6)

ρ0 = ρb

[

1−
ρbgbrb

pb(1 +m)

(

1−
rb
r

)

]m

,

p0 = pb

[

1−
ρbgbrb

pb(1 +m)

(

1−
rb
r

)

]m+1

,

here Tb, ρb and pb are the values of the temperature, density and pressure at the

bottom of the domain, rb. These equations are solved recursively from bottom to top for a

polytropic index that varies with radius as follows:

m(r) = mr +∆m
1

2

[

1 + erf

(

r − rtac
wt

)]

(7)

with ∆m = mcz − mr, mr = 2.5 and mcz = 1.49995. The potential temperature
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associated with this stratification is computed through:

Θe = T0

(

ρbTb

ρ0T0

)1−1/γ

, (8)

where γ = 5/3 defines the adiabatic exponent of an ideal gas. This setup defines a strongly

sub-adiabatic radiative layer (stable to convection) below rtac = 0.7R⊙, followed by a

slightly super-adiabatic, convectively unstable layer. An erf function couples the two shells

with a width of transition wt = 0.01R⊙ (see Fig. 1).

Fig. 1.— Radial profile of the potential temperature for the ambient state. The inset panel

shows a zoom of the convection zone from r = 0.7R⊙ to r = 0.96R⊙.
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2.2. Numerical method and boundary conditions

Eqs. (3) to (4) are solved numerically using EULAG code (Smolarkiewicz et al. 2001;

Prusa et al. 2008). EULAG is an HD and MHD code for incompressible or anelastic

fluid dynamics developed originally for research of atmospheric processes and climate and

generalized over years for a range of geophysical and astrophysical problems. The time

evolution is calculated using a unique semi-implicit method based on a high-resolution

non-oscillatory forward-in-time (NFT) advection scheme MPDATA (Multidimensional

Positive Definite Advection Transport Algorithm); see Smolarkiewicz (2006) for a recent

overview. This numerical scheme does not require explicit dissipative terms in order to

remain stable. Margolin & Rider (2002) have demonstrated analytically that the numerical

viscosity in the MPDATA method is comparable to the sub-grid scale eddy viscosity used

in different LES models. Although this rationale has been done for the solution of the

Burger’s equation only, MPDATA method has been successfully compared with LES in

different contexts (Elliott & Smolarkiewicz 2002; Domaradzki et al. 2003; Margolin et al.

2006). Thus, the results of MPDATA are often interpreted as Implicit LES (ILES) models

(Smolarkiewicz & Margolin 2007).

The boundary conditions are specified as follows. In the latitudinal direction,

discrete differentiation extends across the poles, while flipping sign of the longitudinal and

meridional components of differentiated vector fields. In the radial direction we use stress

free, impermeable, boundary conditions for the velocity field, and asume that the normal

derivative of Θ′ is zero. The simulations are initialized applying a small-amplitude random

perturbation to the velocity field; the results presented in the next section are computed

once the simulations have reached a statistically steady state. It is characterized for the

random fluctuations of the volume averaged fluid quantities around a well defined mean.
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3. Results

The convective properties of the non-rotating solution of Eqs. (2-4) exhibit convection

cells roughly of the same spatial extent with broad and slow upflows and sharp and fast

downflows (see Fig. 2a). The horizontal scale of this motion depends on the resolution

of the model. Initially we consider the same number of grid points as in Ghizaru et al.

(2010), nφ = 128, nθ = 64, nr = 47. Since the viscous terms are not explicitly considered in

the equations, the standard Reynolds or Taylor numbers, cannot be computed. However,

following Christensen & Aubert (2006), we consider a modified Rayleigh number which does

not depend on the dissipative terms, Ra∗ = 1

cpΩ2
0

g ∂se
∂r

, where se is the specific entropy of the

ambient state. From the solution we compute the Mach number, Ma = urms/c
∗

s , where urms

is the volume averaged RMS turbulent velocity and c∗s =
√

γRT ∗
s , T

∗

s is the temperature

of the background state at the middle of the unstable layer (r = 0.85R⊙); and the Rossby

number, which compares the relative importance of turbulent convection over rotation:

Ro = urms/(2Ω0D), where D is a typical length scale, given here by the thickness of the

convective unstable layer, 0.25R⊙. In addition we compute a parameter characterizing the

latitudinal differential rotation;

χΩ = (Ωeq − Ωp)/Ω0 (9)

where Ωeq = Ω(R⊙, 90
◦colatitude) and Ωp = Ω(R⊙, 30

◦colatitude). Overline represents

azimuthal averaging. In the Sun χΩ ≃ 0.2. For models with different Rossby numbers

different values of χΩ are expected due to different velocity correlations. In the next section

we study these correlations and the development of large scale motions in terms of the

balance of angular momentum fluxes.
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Table 1: Simulation parameters and results. The quantities in the table are defined as

follows: Ra∗ = 1

cpΩ2
0

g ∂se
∂r

, urms is the volume average rms velocity (in m/s) in the unstable

layer, Ma = urms/c
∗

s is the Mach number, with c∗s =
√

γRT ∗
s |r=0.85R⊙

being the sound

speed at the middle of the unstable layer, Ro = urms

2Ω0L
and χΩ = (Ωeq − Ωp)/Ω0, where

Ωeq = Ω(R⊙, 90
◦), Ωp = Ω(R⊙, 30

◦) and Ω0 = 2.59× 106 Hz. Models starting with the letter

L have the lowest resolution N = (128× 64× 47), models starting with M and H have 2N

and 4N grid points resolution, respectively. Model N1 has 256× 128× 100 grid points.

Model Ω0 Ra∗ urms Ma(10−4) Ro χΩ

L0 – – 39.6 2.67 – –

L1 Ω⊙/4 16.0 36.2 2.44 0.160 -0.39

L2 Ω⊙/2 4.00 34.0 2.29 0.075 -0.27

L3 4Ω⊙/7 3.05 34.8 2.34 0.067 -0.29

L4 4Ω⊙/6 2.24 35.2 2.37 0.059 0.03

L5 4Ω⊙/5 1.56 33.6 2.26 0.046 0.07

L6 Ω⊙ 1.00 28.3 1.91 0.031 0.18

L7 2Ω⊙ 0.25 28.1 1.90 0.016 0.03

L8 Ω⊙ 0.39 13.7 0.92 0.015 0.12

L9 Ω⊙ 2.00 47.0 3.17 0.052 -0.22

M1 Ω⊙ 1.02 28.1 1.90 0.031 0.16

H0 – – 36.8 2.48 – –

H1 Ω⊙ 1.10 28.2 1.90 0.031 0.09

N1 Ω⊙ 1.78 26.3 1.77 0.029 0.087
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Fig. 2.— Mollweide projection of the vertical velocity, ur, at the subsurface layer, r =

0.95R⊙, for models H0 (without rotation), L2, L5 and L7 (see Table 1). Yellow/dark

color scale represent upward/downward motions.

3.1. Forces balance and angular momentum fluxes

The development and sustenance of large-scale flows depend on correlations between

the components of the turbulent velocities, the so-called Reynolds stresses. The relative

importance of these quantities defines the redistribution of angular momentum. Among

these correlations, of particular importance are the vertical velocity and the rotation rate

of the system since they define the formation of fast rotating zonal flows either at higher or

lower latitudes. To understand this behaviour in our first set of numerical experiments we

change the rotation rate while keeping the ambient state constant (i.e., the same gradient

of potential temperature, Eq. 8).
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Models L1 to L7 in Table 1 summarize the parameters and results for this set of

simulations. The structure of the convective pattern for some representative cases is shown

in Fig. 2b-d, where the radial component of the velocity at the top of the domain is

presented using the Mollweide projection. The angular velocity, Ω/2π, and the meridional

circulation speed for some of these models are shown in the two leftmost panels of Fig. 3.

We present the differential rotation in nHz, in the meridional flow panel the color scale

corresponds to the latitudinal velocity in m/s, and the continuous (dashed) lines depict

contours of the stream function with clockwise (anti-clockwise) circulation. In the next four

panels we show the fluxes of angular momentum in the conservation equation (obtained by

multiplying Eq. 3 by the level arm ̟ = r sin θ):

∂(ρsuφ)

∂t
=

1

̟
∇ ·

(

ρs̟[uφum + u′

φu
′
m]
)

, (10)

where the over-line corresponds to the time and longitude average, um and u
′

m are the mean

and turbulent meridional (r and θ) components of the velocity, respectively. In steady state

the left hand side of the equation vanishes remaining

∇ ·
(

ρs̟[uφum + u′

φu
′
m]
)

= 0. (11)

The first term inside the divergence corresponds to the angular momentum flux due to

meridional circulation and the second one is the flux due to small-scale correlations, the

Reynolds stresses. Each of these terms has radial and latitudinal component,

FMC
r = ρs̟uφur, (12)

FMC
θ = ρs̟uφuθ,

FRS
r = ρs̟u′

φu
′
r,

FRS
θ = ρs̟u′

φu
′

θ.

A more illustrative representation of these quantities is in the cylindrical coordinates ̟ and
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z thus:

F̟ = Fr sin θ + Fθ cos θ, (13)

Fz = Fr sin θ −Fθ cos θ.

All these quantities were computed in the statistically steady state attained after a long

time interval depending on the rotation rate, and averaged in time for 3.4 years.

In the case of the slower rotation rate, Ω0 = Ω⊙/4 (run L1), the convective pattern

exhibits big convection cells which are slightly elongated in the direction opposite to the

rotation. They span the range ∼ ±45◦ of latitude. As for the mean flows, the azimuthal

motion is slower at the equator than at the higher latitudes (left panel of Fig. 3a). The

transport of angular momentum due to Reynold stress in the direction of ̟ is negative at

all latitudes (third panel of Fig. 3a), indicating that the rotation increases inwards. The

most important contribution to the angular momentum flux is, however, the meridional

circulation (rightmost panel of Fig. 3a). Single large scale meridional flow cells develops at

each hemisphere. The circulation is counterclockwise (clockwise) in the northern (southern)

hemisphere (second panel of Fig. 3a). This flow transports the angular momentum from

the lower to higher latitudes so that the zonal flow is accelerated in the direction of rotation

at latitudes between 30◦ and 80◦.

Increasing the rotation rate to Ω0 = Ω⊙/2 (Run L2) or Ω0 = 0.57Ω⊙ (Run L3) we

find that the convection cells are concentrated in a band around ∼ ±30◦ latitude. In this

region the cells are mostly elongated in the longitudinal direction (Fig. 2b). Similarly to

the previous model, the latitudinal differential rotation is anti-solar (Fig. 3b). However, the

radial negative shear at the equator starts not at the base of the convection zone, like in

case L1, but at r ≃ 0.73R⊙. Between 0.7R⊙ < r < 0.73R⊙ the plasma rotates faster than

the rotating frame. In this case the largest contribution to the mixing of angular momentum
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comes again from the meridional circulation. However, this time two strong meridional flow

cells in radius are formed in each hemisphere. In Run L2 the latitudinal velocities are so

high (∼ 40 m/s) that the flow crosses from one hemisphere to another (second panel of Fig.

3b). Thus, the meridional flow is not fully symmetric across the equator even after a long

temporal average.

In runs L4 and L5 the contributions of meridional circulation and Reynold stresses

to the flux of angular momentum are similar. For these cases the plasma at lower latitudes

rotates roughly at the same rate as the rotating frame. Above ∼ 60◦ latitude the zonal

flow decelerates and has the minimal rotation rate at the poles. The meridional flow shows

a multicellular pattern with three or more cells in radius per hemisphere, with latitudinal

velocities of ∼ 10 m/s.

Run L6 (Ω0 = Ω⊙) shows a rotation profile accelerated at the equator (Fig. 3c).

Similar to the Sun, the rotation decreases monotonically towards the poles, and is in

iso-rotation with the stable layer of the domain at middle latitudes. In this case the

Reynolds stress components of the angular momentum flux dominate over the meridional

circulation components. Although at lower latitudes, at the bottom of the convection zone

FRS
̟ is negative, it changes sign above r ∼ 0.85R⊙. However, FRS

z , which transports the

angular momentum towards the equator is more important. Something similar happens

in the fastest rotating case, L7 (Ω0 = 2Ω⊙, Fig. 3d) where the Reynolds stress drive the

differential rotation. In this case, however, the transport along the rotation axis, FRS
̟ , is

the most important flux component. The rotation is faster at the equator and slower at the

poles, but it exhibits jets of slow rotation in a mid latitude range which corresponds to a

cylinder tangent to the base of the convection zone. The term FMC
z has larger values but

varies quickly in radius and latitude. Thus, there are no organized meridional circulation

flows capable to effectively advect the angular momentum.
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Fig. 4.— Radial profiles of the Θe for models L6, L8 and L9 as indicated in the legend.

Thus, in general, the differential rotation establishes as a competition between the

buoyant and Coriolis forces. When buoyancy dominates then the differential rotation is of

the anti-solar type, and when the Coriolis force rotation dominates the rotation is solar-like.

To demonstrate this point we have performed the simulations labeled as L8 and L9 in

Table 1, for which the rotation has the solar value, but the profile of Θe was modified

to decrease and increase the buoyancy term by making the stratification less and more

superadiabatic, respectively (see Fig. 4). The model with less superadiabatic stratification,

L8, develops a faster rotating equator as a consequence of the dominant role of the Corioles

force. The distribution of the angular momentum fluxes seems to be an intermediate case

between the models L6 and L7 (Fig. 6a). On the other hand, a more superadiabatic Θe
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results in antisolar rotation because the buoyancy force dominates in this case. The results

of this model are compatible with the case L2 or L3 (Fig. 6b). Another way to modify the

adiabaticity of the system is considering different relaxation times, τ (1/α in Eq. 4). We

have verified in simulations not presented here that models with shorter τ develop small

fluctuations of Θ′, so that the final profile of Θ is more superadiabatic. Also, models with

longer τ develop large fluctuations that tend to homogenize the potential temperature in

the bulk of the convection zone, leading to a less superadiabatic system. Changes in τ ,

however, are not as important as directly modifying the profile of Θe.

Fig. 5.— Azimuthal average of Θ′ for three different rotation rates corresponding to models

L2, L6 and L7.

It is important to notice that qualitatively the shape of the iso-rotation contours does

not depend on the dominance of the buoyancy or Coriolis forces; in all cases the rotation

contours are aligned along the rotation axis. To study the role of baroclinicity in the

resulting Taylor-Proudman balance, in Fig. 5 we plot the azimuthal average of the potential

temperature fluctuation, Θ′(r, θ), for three representative models: L2, L6 and L7. Slow

rotation models (L1- L3) exhibit small variations of potential temperature predominantly

in the radial direction. In rapid rotating models (L4- L7), below the convection zone, Θ′

aquires larger values, it is positive at the poles and negative at the equator, indicating



– 23 –

warmer poles. However, within the convection zone, this latitudinal gradient does not

propagates and Θ′ varies mainly radially. The lack of a latitudinal gradient in temperature

explains why the contours or differential rotation remain cylindrical (see Eq. 1). The

reasons and implications of this behavior will be explored in a different paper.

The transition between the solar and anti-solar rotation regimes (faster or slower

equator) has been obtained since the early models of Gilman (1976) where he compared

the Rayleigh with the Taylor numbers. In his Fig. 6 he depicts the regimes for transition

between solid rotation, equatorial acceleration and high latitude acceleration. Similar

results for the differential rotation and meridional circulation in the context of rotation

of gas planets were recently reported by Gastine et al. (2013). Performing simulations

for different rotation rates they found a sharp transition from the prograde to retrograde

rotation of equatorial regions. They compared the Rossby number at the equator with the

Rayleigh number at a mid depth, Ra∗, and found that this transition occurs at Ra∗ ∼ 1.

In this paper, we compare the differential rotation parameter, defined in Eq. (9) with the

Rossby number as it is depicted in Fig. 7. For the models with the same ambient state

we find that the sharp transition between the prograde and retrograde regimes occurs at

Ro ≃ 0.063 (Ra∗ ≃ 3 in Table 1), indicated by the vertical dashed line in Fig. 7. In

models with the same rotation rate but with higher (lower) superadiabaticity (models L8

and L9), the transition can happen at lower (higher) values of Ro. It is noteworthy to

mention that the model L6 is in a good agreement with the solar value of χΩ, indicated by

the horizontal dashed-dotted line. For the model with faster rotation, L7, the differential

rotation parameter, χΩ, decreases. Here it happens due to the formation of a cylinder

of slow rotation at intermediate latitudes. However, similar global simulations of fast

rotating stars also show a decrease in the latitudinal differential rotation (Brown et al. 2008;

Dubé & Charbonneau 2013). Käpylä et al. (2011b) also explored the transition

from anti-solar to solar-like differential rotation in compressible simulation of
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convection in spherical wedges. In their Fig. 17 they compare the rotation

parameter with the Coriolis number (inverse to Ro). Unlike our results and

those in Gastine et al. (2013), in their case this transition seems to be smoother.

However, due to the differences in the stratification profile considered and their

definition of χΩ this comparison is not straightforward.

Fig. 7.— Differential rotation parameter, χΩ (Eq 9), as function of the Rossby number,

Ro for the simulation models defined in Table 1. The dashed vertical line at Ro = 0.063

indicates the sharp transition between ”solar”-type (prograde) and ”antisolar” (retrograde)

regimes of the differential rotation. The dashed-dotted line indicates the solar value of χΩ.
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3.2. Convergence test

As a test for the implicit SGS model, we performed a set of simulations presented

for the same stratification (Θe) and the same rotation rate (Ω⊙) but for different mesh

resolutions. Run L6, presented in the previous section was for a relatively coarse grid model

with 128× 64× 47 mesh points. Models M1 and L1 have 2 and 4 times higher resolution,

respectively. Snapshots of the vertical velocity for the cases L6, M1 and H1 are shown,

from top to bottom panels, in Fig. 8. In all three cases convective “banana” cells elongated

along the rotation axis appear in a belt of ±30◦. However, the scale of these banana cells

depends on the resolution, i.e., a larger number of azimuthal modes seems to be excited for

higher resolutions. The higher latitudes are populated with smaller and more symmetrical

convection cells whose horizontal scale also decreases with the increasing of the resolution.
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Fig. 8.— Snapshots of vertical velocity, ur for models L6, M1 and H1 (Table 1) with lower,

intermediate and higher grid resolution (from top to bottom).
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To study the energetics of the interacting large and small scales for each of these

simulations we have computed the power spectrum of the kinetic energy at a given radius,

using the Fourier transform in the azimuthal direction:

ûm =

∫

u(rt, θ, φ) exp(imφ)
dφ

2π
, (14)

where m is the azimuthal wave number, and the power spectrum definition (Mitra et al.

2009):

Eu = 〈û2
m〉θ, (15)

where the brackets denote average over latitude. Note that
∑

Eu = 〈u2〉. The spectra for

models L6, M1 and H1 are plotted in Fig. 9. For the coarser resolution (continuous black

line) the spectrum shows an energy decay from the smaller wavenumber up to 7 . m . 15.

There are peaks of power at m ≃ 5 and m ≃ 7, which probably correspond to the scales

of the banana cells. From m ≃ 15 to the smallest resolved scale, m = 64, there are two

different sub-ranges, one of which is compatible with the inertial turbulent decay (although

not exactly following the Kolmogorov k−5/3 law, see dot-dashed line) up to m ≃ 30, followed

by a faster decay. In total, the energy spectra spans ∼ 3 orders of magnitude. The spectrum

for the run M1 (red line) is similar to L6, but in this case the excess of power is at m ≃ 6.

There is a plateau of energy from 10 . m . 20 followed by a decay up to the smallest wave

number m = 128. The model H1 with higher resolution (blue line) does not have a plateau,

and the energy seems to decay continuously, with a seemingly inertial sub-range between

12 . m . 30. The peak at m ≃ 12 contains the energy of thin banana cells observed in this

simulation. In total this model spans ∼ 5 orders of magnitude in energy. For comparison we

have plotted also the power spectrum of the models without rotation for low, L0, and high,

H0, resolutions (black and blue dotted lines). Evidently the convective energy is higher in

the models without rotation. It is interesting how this simulations show a turbulent decay

consistent with k−5/3 which spans several orders of magnitude in energy and for a long

range of scales.
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Fig. 9.— Power spectrum of the velocity field at r = 0.95R⊙ as a function of the azimuthal

wavenumber, m, for simulations with different numerical resolution, L6, M1 and H1 (see

legend and Table 1). Continuous (dotted) lines correspond to the models with (without,

models L0 and H0) rotation. The dot-dashed line indicates the −5/3 power decay.

Similarly to Fig. 3, Fig. 10 shows the profiles of differential rotation and meridional

circulation obtained for models M1 and L1, as well as the angular momentum flux

components. In model M1 the mean rotation and meridional flows slightly resemble those

of model L6. In this case, however, the rotation shows a band of rotation with the speed

of the stable layer, which spans over a large latitudinal extent. Both quantities, the Rossby

number, Ro, and the rotation parameter, χΩ are similar to those of model L6, so that this

case appears almost at the same position in Fig. 7. Regarding the angular momentum
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fluxes, the meridional distribution of FRS
̟ and FRS

z is qualitatively similar to L6. In the

case M1, the Reynolds stress contribution is about one half of that in case L6 (see Fig.

10a). On the other hand, FMC
̟ and FMC

z increase by a factor of two. Given the resemblance

in the Reynolds stresses profiles, the differential rotation does not differ abruptly between

cases L6 and M1. The meridional motions are, however, more pronounced in this case.

Like in case L6, there are several cells in the meridional flow profile elongated in the z

direction.

This contribution of meridional circulation to the angular momentum flux appears

further enhanced in the high resolution model, H1 (Fig. 10b). Although there is an

equatorial acceleration due to a positive FRS
̟ flux, both FRS

̟ and FRS
z are decreased in

amplitude. Most importantly, there is no morphological similarity to the cases L6 and M1.

This leads to a different profile of Ω. Instead of a continuous decrease with latitude, there

is a retrograde jet which appears at the surface between 20◦ and 40◦. This seems to be

the consequence of meridional motions aligned along the tangent cylinder at r ≃ 0.71R⊙.

Another prograde jet appears at mid latitudes, from there up to the poles the azimuthal

velocity equals the rotation rate of the frame, with a slight decrease towards the poles. In

this case the meridional motions enhance FMC
̟ and FMC

z by another factor of 2.

It is surprising that although the Rossby number, Ro, is similar for the models with

three different resolutions, indicating that the balance between the Coriolis and buoyancy

forces is roughly the same, in case H1 the value of χΩ (≃ 0.09) is smaller than in the lower

resolution models L6 and M1, while FMC is larger. It might be the case that when a

more complex and turbulent flow develops, small-scale motions contributing to the angular

momentum transport diffuse on shorter timescales so that the Coriolis force does not affect

them. The appearance of these new scales of motion might also change the role of the

sub-grid scale transport, relegating its action to scales not resolved. The situation could be
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that the smallest resolved scales are already modifying the system. The question that arises,

and deserves further investigation, is why these effects are not captured by the sub-grid

scale transport in the coarser resolution cases? It is puzzling why our model L6 with the

rather coarse resolution reproduces the solar rotation closer than the higher resolution

models, M1 and L1. Perhaps it may be necessary to include explicit eddy transport in the

higher resolution models (i.e., include in the equation an explicit term for the turbulent heat

diffusion or for the viscosity) in order to increase the efficiency of the unresolved turbulent

transport. In other words, this will modify the effective Prandtl number of the simulation.

Another possibility could be to readjust the parametrized turbulent heat flux profile, Θe.

3.3. The solar near-surface shear layer

In the upper part of the solar convection zone the velocities are such that the turnover

time is of the order of minutes (for granulation) or hours (super-granulation). These time

scales are smaller when compared with the solar rotation period, 28 days, indicating that

there the buoyancy force is dominating over the Coriolis counterpart. Observations indicate

that in this region the radial shear is negative, i.e., the angular velocity decreases with

radius. In the simulations described in the previous sections, an inward angular momentum

flux is clearly observed in the buoyant dominated regime. It corresponds to an angular

velocity which decreases radially outwards. In order to simulate the buoyancy dominated

regime, we can take advantage of our formulation of the energy equation and impose a rapid

decrease of the potential temperature in the upper part of the convection zone. Although

radiative cooling is not considered in the simulations, this sharp decline of the potential

temperature (or entropy) occurs indeed at the upper part of the convection zone due to

hydrogen ionization.

In the model labeled as N1 we extend the domain in the radial direction up to
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r = 0.985R⊙ and modify the ambient state (Eq. 7) by considering the polytropic index

m(r) = mr + ∆m
1

2

[

1 + erf

(

r − rtac
wt

)]

(16)

+ ∆m2

1

2

[

1 + erf

(

r − rnssl
wt

)]

,

where ∆m2 = mnssl −mcz, with mnssl = 1.4996 and rnssl = 0.96R⊙ (see black dotted line in

Fig. 11).

Fig. 11.— Radial profile of the simulated angular velocity for model N1. Different line

styles and colors correspond to different latitudes as indicated in the legend. Dotted line

indicates the radial profile of the Θe (Eq. 16). At equatorial latitudes the angular velocity

decays at the upper part of the domain (blue line).
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The convection pattern, illustrated by the radial velocity field, at the top of the domain

(r = 0.98R⊙, upper panel of Fig. 12) resembles the model M1 (middle panel of Fig. 8).

Elongated convective structures are observed at lower latitudes, however, these patterns

are not the banana cells observed in the model M1 but rather smaller convection cells

organized along the banana cells located below the solar surface. A snapshot of the radial

velocity at r = 0.94R⊙ clearly shows that the banana cells still exist below the surface

(bottom panel of Fig. 12).
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Fig. 12.— Snapshots of vertical velocity, ur (in m/s), of the model N1. Upper and bottom

panels correspond to r = 0.98R⊙ and r = 0.94R⊙.
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The power spectrum at two different depths for this model shown in Fig. 13 indicates

an excess of power at m = 3 and m = 5 for r = 0.98R⊙. There are several peaks of power

between 10 . m . 20 corresponding to the smallest resolved scales. For r = 0.94R⊙ there

is no peak which could be identified with the banana cells, however the peaks at large scales

do not appear. The peaks of the smaller scales remain at the same values of the angular

degree.

Fig. 13.— Power spectrum of the kinetic energy for the model N1. The blue and red lines

correspond to r = 0.98R⊙ and r = 0.94R⊙, respectively. The dotted-dashed line indicates

the Kolmogorov 5/3 turbulent decay law.

Like in the Sun, the rotation profile shows acceleration at the equator. Above



– 35 –

r = 0.96R⊙ the rotation decreases with radius at lower latitudes (see blue line in Fig. 11).

This negative shear does not remain for latitudes above 15◦, and the contrast of differential

rotation in this case is χΩ = 0.087. Our interpretation is that the near-surface shear layer

is associated with an inwards transfer of the angular momentum as a consequence of fast

convective motions near the surface in the buoyancy dominated regime. The fact that

this negative shear does not spread to high latitudes could be related to the width of the

upper layer. A thicker near-surface layer could induce meridional motions transporting

the angular momentum in the latitudinal direction. It might also be associated with the

vertical contours of rotation obtained in our model (different from the solar rotation profile)

or with the boundary conditions.

4. Discussion

Large scale flows in rotating turbulent convection, like in giant planets and stars, are

developed due to collective turbulent effects. These flows are important in astrophysics since

they could explain the observed patterns of surface differential rotation and, in addition,

because they could be responsible for the generation of large-scale magnetic fields via the

dynamo process.

In this paper we have explored the development of these large scale flows in global

simulations of a convective envelope whose stratification resembles the solar interior.

Although our main goal is study the pattern of differential rotation observed in the Sun,

our results with different rotation rates are applicable also to solar-like stars.

The model considered here has proven to work well in simulating stellar interiors. The

inviscid numerical method allows higher turbulent levels even with a coarse resolution.

Besides, the energy formulation allows convection development in an slightly super-adiabatic
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state, which is expected to happen in an environment where the radiative flux is small.

In our numerical experiments we have obtained convective patterns, rotation and

meridional circulation profiles for solar-like stars for a broad range of rotation rates. The

basic properties of the flow structure are compatible with previous results of rotating

convection obtained with different numerical codes (e.g., Käpylä et al. 2011b; Gastine et al.

2013). The Reynolds stress components computed from our simulations also agree with

previous results in spherical geometry (e.g., Käpylä et al. 2011b) and partially agree with

the mean-field theory of Lambda-effect (Rüdiger & Kitchatinov 2007).

We have explained the develpment of differential rotation as a consequence of the

competition between buoyancy and Coriolis forces. This balance results in different

Reynolds stress profiles which define the angular momentum distribution. For slow rotating

models where buoyancy dominates, the most important contribution to the angular

momentum flux comes from the meridional circulation, which results from the turbulent

correlation 〈u′

ru
′

θ〉. For large Rossby numbers the results show either one (model L1) or

two (models L2 and L3) meridional cells per hemisphere.

For the rapidly rotating models the correlations 〈u′

φu
′

θ〉 and 〈u′

φur〉 dominate, and

〈u′

ru
′

θ〉 might have only a marginal contribution. The differential rotation forms due to

these components of the Reynolds stress and the meridional flow is formed due to inertial

forces due to the rotation (Miesch & Hindman 2011). The meridional circulation exhibit

several cells forming at each hemisphere. This result was found in other global convection

simulations (e.g., Brun & Toomre 2002; Käpylä et al. 2011b; Ghizaru et al. 2010). However,

the formation of several circulation cells is at odds with hydrodynamic mean-field models.

In order to obtain a solar-like differential rotation profile, our simulations require

convective velocities of the order of m/s in the bulk of the convection zone. The Rossby

number associated with this rotation rate and urms is of the order of 10−2 which defines the
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Sun as a fast rotator, see Fig. 7. Furthermore, the models close to the transition between

anti-solar and solar-like differential rotation also show multiple circulation cells. Recent

observational results also indicate that the Sun has more than one cell (Hathaway 2012;

Zhao et al. 2012, 2013). Further studies are required, however, to clarify this issue.

We have also shown that the transition between anti-solar to solar-like rotation could

also be obtained by changing the forcing of the system, i.e., making convection more or less

vigorous (models L3, L8 and L9). However, as mentioned before, for the solar rotation

rate, only the ambient state defined in Eqs. (6 to 8) results in a fair agreement with the

observed properties described in Introduction as items (i) to (iv). In the model L6 we have

been able to satisfy the properties (i) and (iii). An important result is the formation of the

tachocline at the interface between stable and unstable layers.

In all the models presented here the rotation contours have cylindrical shape. Although

at just below the tachocline a latitudinal gradient in Θ′ is observed in the rapid rotating

simulations, it is not transported to the inner convection zone, thus being insufficient

to break the columnar rotation. The solar rotation property (ii) is not reproduced for

our model. A different choice of the ambient state Θe has proven to be able to create

radial contours of rotation at middle an high latitudes (Racine et al. 2011). On the other

hand, Warnecke et al. (2013) have obtained conical rotation profiles at lower latitudes

by considering an extended domain where the solar convection zone is surrounded by a

simplified coronal model. We believe that a more fundamental property (including the

contribution of the magnetic field) of the plasma could be the responsible for the radial

rotation profiles. A detailed study of this will be the subject of a forthcoming paper.

To tackle the formation of the near-surface shear layer, property (iv), we have

constructed a model with an extended radial domain up to r = 0.985R⊙. In the outer 6%

of the domain the entropy of the ambient state decreases rapidly with radius. The results
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of the model N1 show that the Rossby number increases in this thin layer to values above

Ro = 0.1. This indicates that convection is vigorous in this region, evolves on a short

timescale, and is only marginally affected by rotation. In this case, above r = 0.96R⊙ the

angular velocity decreases with radius at near equatorial latitudes . 15◦. Due to the thin

width of the layer no poleward meridional circulation (like the one observed in slow rotating

models) is formed due to this negative shear. Similar results have been obtained by Käpylä

et al. (2011a) and Gastine & Wicht (2012) with the use of a strong density stratification.

Although we keep the adiabatic background stratification constant in the energy equation,

the density constrast associated with the ambient state, ρe, increases. Thus, both methods

seem to be equivalent. In order to reproduce a near-surface shear layer spaning over all

latitudes a further extended radial domain is perhaps required. Tilted contours of rotation

in the bulk of the convection zone might also facilitate the formation of this layer such as it

is observed.

We have tested the convergence of our models by increasing the resolution of the

model L6 by a factor of 2 and 4 in models M1 and H1, respectively. The results show

that for higher resolutions the solar-like differential rotation profile disappears in the

deep convection zone and is reduced at the surface. We noticed that that meanwhile the

Rossby number remains roughly constant, the contribution of the Reynolds stress flux

decreases and the meridional circulation flux increases. This indicates that the smaller

scales resolved when the turbulence of the system is increased are modifying the mixing

of angular momentum in an unexpected way. This issue has been found and studied in

previous works (Miesch et al. 2000; Elliott et al. 2000; Brun & Toomre 2002), by exploring

different parameter regimes and boundary conditions. Brun & Toomre (2002) found that

a solar-like latitudinal difference in Ω could be achieved at higher Reynolds number by

decreasing the Prandtl number. This implies a more homogeneous and efficient exchange of

heat and filtering certain scales. This kind of analysis involves the use of explicit dissipative
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terms with coefficients having eddy values (i.e., a different SGS model) and is subject for

our future work.
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Fig. 3.— Differential rotation, meridional circulation (panels 1 and 2 from left to right in

each row) and angular momentum flux components of Eq. (13): FRS
̟ , FMC

̟ , FRS
z and FMC

z

(panels 3 to 6 from left to right), for the simulations L1, L2, L6 and L7 (top to bottom).

All the profiles correspond to mean azimuthal value averaged over ∼ 3 years during the

steady state phase of the simulation.
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Fig. 6.— Same than Fig. 3 but for models a) L5 and b) L6. More (less) vigorous convection

leads also to models with slower (faster) equator. The results are comparable to those of

models L6 or L7 and L2, respectively.
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Fig. 10.— Same than 3 but for models M1 and H1 with 256×128×94 and 512×256×188

mesh points, respectively.
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Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2011a, Astronomische Nachrichten, 332,

883

—. 2012, ApJL, 755, L22
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Rüdiger, G., & Kitchatinov, L. L. 2007, in The Solar Tachocline, ed. D. W. Hughes,

R. Rosner, & N. O. Weiss, 129

Schou, J., Antia, H. M., & Basu, S. e. a. 1998, ApJ, 505, 390



– 46 –

Smagorinsky, J. 1963, Monthly Weather Review, 91, 99

Smolarkiewicz, P. K. 2006, International Journal for Numerical Methods in Fluids, 50, 1123

Smolarkiewicz, P. K., & Margolin, L. G. 2007 (Cambridge University Press), 413

Smolarkiewicz, P. K., Margolin, L. G., & Wyszogrodzki, A. A. 2001, Journal of Atmospheric

Sciences, 58, 349

Spiegel, E. A., & Zahn, J.-P. 1992, A&A, 265, 106
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